

Enviro-Septic[®] System: Design and Installation Manual Province of Ontario

Make-Way Environmental Technologies Inc. P.O. Box 1869, Exeter, ON N0M 1S7 Phone: (519) 235-1176, Fax: (519) 235-0570 Toll Free: (866) MAKE-WAY (625-3929) E-mail: bert@makeway.ca, Website: www.makeway.ca

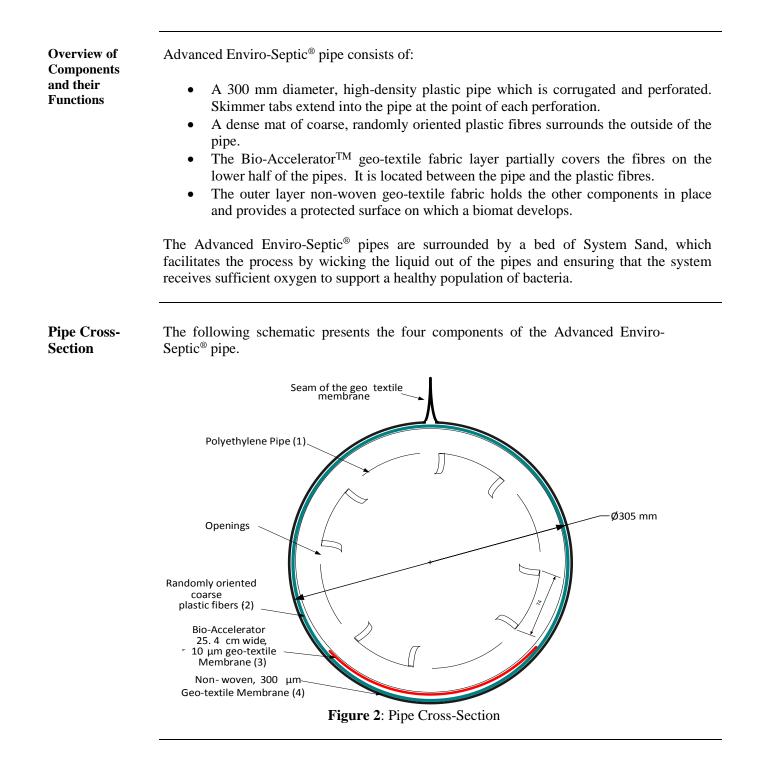
Ш

Ζ

September 2018 Version 4.0

Table of Content

Introduction	3
Section A - Enviro-Septic [®] Basics	4
Section B - Definitions of Terms	
Section C - Designing Steps for the Enviro-Septic [®] System	13
Section D - Enviro-Septic [®] Layout and Sizing	16
Section E - General Design Criteria	23
Section F - Sand and Fill Requirements	25
Section G - System Configurations	27
System Using a Distribution Box (Parallel Distribution)	27
Section H - Flow Distribution Device Configurations	33
Section I - Special Configurations	38
Section J - Pump and Dosing System Requirements	40
Section K - Venting Requirements	42
Section L - Piezometers	45
Section M - Sampling device	46
Influent Sampling	46
Treated Effluent Sampling	
Installation Guide	54
Section N – Description Tag, Handling and Storage	54
Section O – Sequential Installation Procedure	56
Sequential Procedure	56
Sampling Device Installation	60
Sand Layer and Rows of Pipe	66
Completing the Installation	77
Use and Maintenance Guide	78
Section P – Daily Use	78
Section R – Method of Collecting and Evaluating Samples	84
Troubleshooting and Repair Guide	
Section S - Component Inspection Procedure	
Section T - Replacement or Repair of Components	90


Section U – Rejuvenation Process and Expansion	95
Closing Words	97
Appendix 1 - System Follow Up Form	98
Appendix 2 – Examples of In-Ground Enviro-Septic Systems	100
In Ground System – Scenario 1: Q = 2000 L/day, T = 5 min/cm	100
In Ground System – Scenario 2: Q = 2000 L/day, T = 20 min/cm	102
In Ground System – Scenario 3: Q = 2000 L/day, T= 40 min/cm	105
In Ground System – Scenario 4: Q = 2000 L/day, T > 50 min/cm	107
Appendix 3 – Examples of Partially Raised Enviro-Septic Systems	108
Partially Raised System – Scenario 5: Q = 2000 L/day, T = 5 min/cm	108
Partially Raised System – Scenario 6: Q = 2000 L/day, T = 20 min/cm	111
Partially Raised System – Scenario 7: Q = 2000 L/day, T = 40 min/cm	114
Partially Raised System – Scenario 8: Q: 2000 L/day, T > 50 min/cm	116
Appendix 4 – Examples of Fully Raised Enviro-Septic Systems	117
Fully Raised System – Scenario 9: Q = 2000 L/day, T = 5 min/cm	117
Fully Raised System – Scenario 10: Q = 2000 L/day, T = 20 min/cm	120
Fully Raised System – Scenario 11: Q = 2000 L/day, T = 40 min/cm	123
Fully Raised System – Scenario 12: Q = 2000 L/day; T > 50 min/cm	126

Introduction

Context	The purpose of this manual is to provide information specific to the Province of Ontario for use in the design and installation of the Enviro-Septic [®] System.		
	The Building Materials Evaluation Committee (BMEC) authorization report specifies design criteria that must be followed in order to design and install an Enviro-Septic [®] System. The BMEC authorization takes precedence over any design criteria detailed in this manual.		
	The Ontario Building Code (OBC) must also be followed and takes precedence over any design criteria in this manual.		
Project of more than 10,000 Litres	This design manual is applicable to systems that have a daily design sewage flow of 10,000 litres or less.		
	Systems that have a daily design sewage flow of greater that 10,000 litres per day are governed by the Ministry of Environment, Conservation and Parks (MECP).		
Provincial Standards	This manual is applicable to the Province of Ontario. This design and installation manual is to be used in conjunction with Part 8 of the OBC, and the BMEC authorization.		
Certification Required	The Province of Ontario requires that all designers and installers of septic systems must be certified by the Province. Designers and Installers of the Enviro-Septic [®] System must also be certified by the manufacturer or manufacturer's representative. Certification is obtained by attending the "Enviro-Septic [®] Designer and Installer Certification Course" presented by Make-Way Environmental Technologies Inc.		
Technical Support	Make-Way Environmental Technologies Inc., the Ontario distributor of the Enviro-Septic [®] products provides technical support to all individuals using the Enviro-Septic [®] system. For questions about the Enviro-Septic [®] product or the information contained in this manual, please contact us at 1-866-625-3929.		

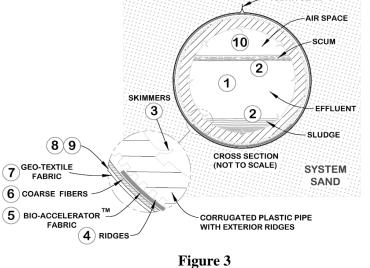
Section A - Enviro-Septic® Basics

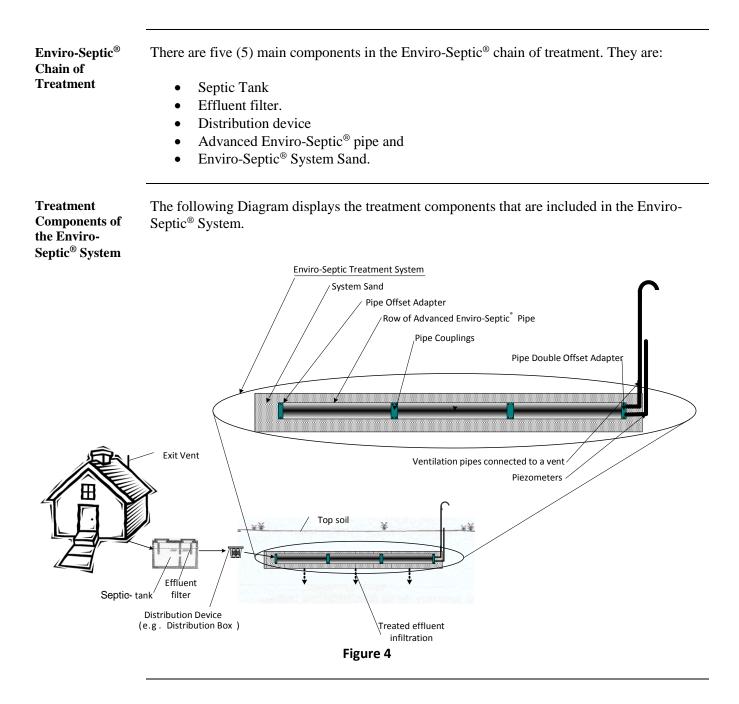
Background	Sewage effluent that exits from a septic tank (primary treatment effluent) contains suspended solids that can cause traditional systems to fail prematurely. Solids can overload bacteria, cut off air required for aerobic bacterial activity, and/or clog the underlying soil, interfering with its ability to absorb liquid.		
What our System Does	By utilizing simple, yet effective natural processes, the Enviro-Septic [®] System treats septic tank effluent in a manner that prevents solids from entering surrounding soils, increases system aeration, and provides a greater bacterial area (mat) than traditional systems.		
Why our System Excels?	By utilizing simple yet effective natural processes, the Enviro-Septic [®] wastewater treatment System treats septic tank effluent in a manner that prevents suspended solids from clogging the underlying soil, increases system aeration, and provides a greater bacterial area ("biomat") than traditional leaching systems. No other passive wastewater treatment system design offers this functionality. Enviro-Septic [®] Systems excel because they are more efficient, last longer, and have a minimal environmental impact.		
System Components	Coupling Gingle Offset Adapter		
	Figure 1		

Operating Principles	When effluent leaves the septic tank (primary treatment tank), it still contains some suspended material, fats and grease and other pollutants. The presence of these elements eventually causes clogging of traditional leaching fields. The Enviro-Septic [®] System facilitates the treatment of sewage effluent by using natural bacterial processes in a more efficient way. The cooling of the effluent in the pipes and the aerobic bacterial activity around the geo-textiles allow for the separation of suspended solids, which are retained inside the pipes. The combination of air flow and continually fluctuating liquid levels in the pipes increases the effectiveness of bacterial activity in the membranes. These processes create a system with an interior balance, prolonging the system's lifespan and allowing the system to treat the wastewater effectively before it is dispersed into the environment. The Enviro-Septic [®] Wastewater Treatment System is passive, requiring no electricity or complicated mechanical devices.
System Advantages	 Here's a brief list of the advantages of The Enviro-Septic[®] System. Eliminates "septic mounds" through sloping system installations Adapts to difficult sites Installs more easily and quickly than traditional systems Eliminates the need for expensive washed stone Adapts easily to both residential and commercial sites No mechanical equipment for treatment performance Allows for gravity discharge with often no requirement for pumps Lower cost than comparable level IV (tertiary) treatment systems

SEWN SEAM AIR SPACE (10) SCUM (2) (1) SKIMMERS EFFLUENT 3 2 SLUDGE (8)9CROSS SECTION (NOT TO SCALE) SYSTEM SAND 6 COARSE FIBERS 5 BIO-ACCELERATOR CORRUGATED PLASTIC PIPE WITH EXTERIOR RIDGES FABRIC

ENVIRO-SEPTIC[®] WASTEWATER TREATMENT SYSTEM with BIO-ACCELERATOR™ TEN STEPS OF WASTEWATER TREATMENT: ENVIRO-SEPTIC[®]TREATS EFFLUENT MORE


EFFICIENTLY TO PROVIDE LONGER SYSTEM LIFE AND TO PROTECT THE ENVIRONMENT.


What it Looks Like

How it Works

These are the basic stages that take effect in the Enviro-Septic[®] System.

Stage	What Happens
1	Warm effluent enters the pipe and is cooled to ground temperature.
2	Suspended solids and grease separate from the cooled liquid effluent.
3	Skimmers further capture grease and suspended solids from the effluent as it exits through perforations in the pipe.
4	Pipe ridges allow the effluent to flow uninterrupted around the circumference of the pipe and aid in cooling.
5	Bio-Accelerator fabric screens additional solids from the effluent and develops a biomat which provides treatment and ensures effluent distribution along the entire length of the pipes
6	A mat of coarse random fibers separates more suspended solids from the effluent.
7	Effluent passes into the geo-textile fabric and grows a protected bacterial surface.
8	Liquid exiting the geo-textile fabric is wicked away from the piping by the surrounding System sand. This enables air to transfer to the bacterial surface.
9	Bacteria grow on the fibrous mat and geo-textile surfaces to create a biomat and break down the sewage solids.
10	Bacterial efficiency is increased by the large air supply and fluctuating liquid levels which provide for optimum bacterial activity.

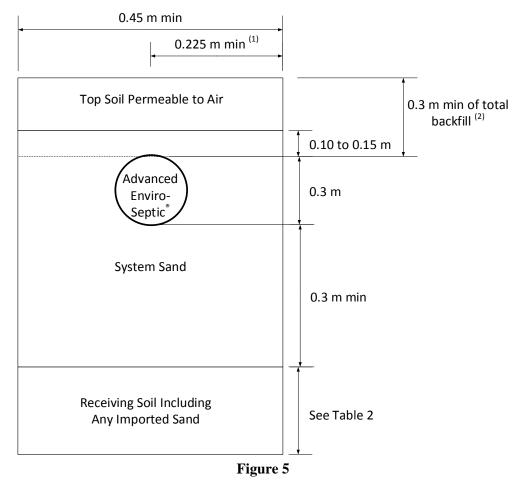
Table 1 Components of Treatment System

Enviro-Septic [®] System Component	Function		
Septic Tank	Used as primary Treatment		
Effluent Filter	Used to prevent solids from passing out of the		
	septic tank.		
Pump Station (optional)	Used between the Septic Tank and the distribution		
	device when the effluent cannot be sent to the		
	Advanced Enviro-Septic [®] pipe rows by gravity		
Velocity Reducer	Always required when a pump station is used ¹ . Can		
	be done with a minimum 3 m length 100 mm		
	watertight pipe placed horizontally or in an upwards		
	slope towards the distribution box. Used to reduce		
	the velocity of the septic tank effluent before		
	arriving at the distribution device.		
Distribution Device	Used to distribute the septic effluent between the		
	rows of Advanced Enviro-Septic [®] pipe. For		
	example, a distribution box with flow equalizers.		
Enviro-Septic [®] Contact Area	Area of infiltrative surface, directly below the		
	Enviro-Septic System, required to absorb the treated		
	effluent into the underlying native soil.		
Advanced Enviro-Septic [®] pipe rows	Used to treat and distribute the septic tank effluent		
	over the Enviro-Septic [®] Contact Area.		
	The Enviro-Septic [®] rows are comprised of the 3.05		
	m lengths of Advanced Enviro-Septic [®] pipes, offset		
	adaptors and couplings.		
System Sand	Used to increase the development of		
	microorganisms that treat wastewater before it		
	infiltrates into the soil. Also helps in providing air		
	to the system.		
Sampling Device	The sampling device is used to retrieve samples of		
	the treated effluent from the Enviro-Septic [®] System.		
	The sampling device is placed at the base of the		
	Enviro-Septic [®] System, below the System Sand.		
Vents	The vents are to allow the circulation of air		
	throughout the system. Venting occurs through a		
	combination of a high and low vent to create a		
	vacuum. The low (entry) vent is located at the end		
	of the rows of Advanced Enviro-Septic [®] pipe and		
	the high vent (exit) is located on the roof of the		
	building. Other configurations may be used when		
D '	the roof vent is not viable.		
Piezometers	The piezometers are located at the end of each row		
	or a combination of rows. They are used to monitor		
	the system.		

¹ The velocity reducer is not required with a Low Pressure Distribution System.

Section B - Definitions of Terms

Introduction	As you read through the information in this manual, you will encounter common terms, terms that are common to our industry, and terms that are unique to Enviro-Septic [®] Systems. While alternative definitions may exist, this section defines these terms as they are used in this manual.				
List of Terms	Here's a list of the terms defined in this section.				
	 Center to center spacing Coupling Daily design sewage flow D-Box Differential venting Distribution box Distribution box manifold Distribution Device Double offset adapter End cap End extension distance Enviro-Septic[®] Contact Area Advanced Enviro-Septic[®] pipe Enter to center spacing Equalizer™ Equalizer™ High and low vents Imported sand Infiltrative surface Infiltrative surface L/day Lateral extension distance Offset adapter Row length Sloping system System Sand Uniform distribution Vertical Separation 				
Center to Center Spacing	<u>Center to center spacing</u> is the horizontal distance from the center of one Enviro-Septic [®] row to the center of the adjacent row. The abbreviation for this term is E_{cc} .				
Coupling	A coupling is a fitting that joins two pieces of Advanced Enviro-Septic [®] pipe together.				
Daily Design Sewage Flow	<u>Daily design sewage flow</u> is the determined liters/day flow for sewage systems as detailed by the Ontario Building Code (Table 8.2.1.3.A and Table 8.3.1.3.B)				
D-Box	<u>D-Box</u> is an abbreviation for distribution box.				
Differential Venting	Differential venting is a method of venting an Enviro-Septic [®] System utilizing high and low vents.				
Distribution Box	A <u>distribution box</u> is a device used to divide and/or control the septic tank effluent flow into the Enviro-Septic [®] rows of pipe.				
Distribution Box Manifold	A <u>distribution box manifold</u> is a method of joining any number of distribution box outlets to a single pipe.				
Distribution Device	A <u>distribution device</u> is a device used to divide and/or control the septic tank effluent flow. The distribution device can be a distribution box, or another flow splitting device.				
Double Offset Adapter	A <u>double offset adapter</u> is an end cap fitted with two 100 mm offset holes at the 6 and 12 o'clock positions.				
End Cap	An end cap is a solid cap used to seal the end of an Enviro-Septic [®] pipe.				


End Extension Distance	The <u>end extension distance</u> is the distance filled with additional sand material extending from the end of a row to the side of the treatment system contact area. The abbreviation for this term is E_{e} .		
Enviro-Septic [®] Contact Area	The Enviro-Septic [®] <u>contact area</u> means the area of infiltrative surface, directly below the treatment system, required to absorb the treated effluent into the underlying native soil.		
Advanced Enviro-Septic [®] Pipe	An Advanced <u>Enviro-Septic[®] pipe</u> is a single unit of pipe, 3.05 m in length, with an outside diameter of 300 mm and a storage capacity of approximately 220 liters. The set of membranes surrounding the pipe includes the Bio-Accelerator.		
Equalizer™	An <u>Equalizer</u> TM is a plastic insert installed in the outlet lines of a distribution box to provide more equal effluent distribution to each outlet, and allow future adjustments		
High and Low Vents	High and low vents are pipes used in differential venting.		
Imported Sand	<u>Imported Sand</u> is imported leaching bed fill having a 'T' time of 6 to 10 min/cm with less than 5% fine passing #200 sieve, that is imported to the site to raise the system to achieve vertical separation. This does not include the System Sand which is part of the treatment system.		
Infiltrative Surface	The <u>infiltrative surface</u> means the area of interface where effluent migrates downward from the Enviro-Septic [®] System and passes into the native soil or leaching bed fill.		
L/day	Abbreviation for liters per day.		
Lateral Extension Distance	The <u>Lateral extension distance</u> is the distance filled with System Sand extending from the center of the last lateral row to the side of the treatment system. The abbreviation for this term is $\mathbf{E}_{\mathbf{L}}$.		
Offset Adapter	An <u>offset adapter</u> is an end cap fitted with a 100 mm offset opening at the 12 o'clock position.		
Raised or Partially Raised Enviro-Septic [®] System	<u>Raised or Partially Raised Enviro-Septic[®] System</u> means an Enviro-Septic [®] system in which any part of the system is above the natural ground elevation.		
Row Length	The <u>row length</u> is the length of the Advanced Enviro-Septic [®] pipes that are connected together with the couplings. The abbreviation for row length is L_r .		
Sloping System	A <u>Sloping system</u> is a system in which rows of Advanced Enviro-Septic [®] pipes are at different elevations.		
System Sand	System sand is sand that has specific criteria and is used to surround the Advanced Enviro-Septic [®] pipe. See Section F for sand criteria.		
Uniform Distribution	The <u>uniform distribution</u> means the even dispersal of septic tank effluent to the rows of pipe and the equal distribution of the rows of pipe over the Enviro-Septic [®] Contact Area.		

Vertical	The Vertical separation means the depth of unsaturated soil including any imported sand			
Separation	below the Enviro-Septic [®] System as measured from the bottom of the system (System Sand			
	layer) to a limiting surface such as high ground water table, rock or soil with a percolation			
	time greater than 50 min/cm.			

Section C - Designing Steps for the Enviro-Septic® System

Context	In this section we will present the necessary steps required to design an Enviro-Septic [®] System. The necessary steps required are:			
	 On site Determine the total daily design sewage flow. Determine the available area for the treatment system. Determine the slope of the site. Evaluate the ability of the soil to infiltrate the treated effluent from the system. 			
	 Determine the available options Discuss the treatment alternatives with the clients while taking into account the advantages and disadvantages of each of them. 			
	Design the system dimensions and prepare the drawings.			
	These steps will be discussed in the following pages			
Determine the Daily Design Sewage Flow	Reference: Ontario Building Code: code and guide for sewage systems - Ontar Regulation 332/12 Article 8.2.1.3			
	 For Residential occupancies the total daily design sewage flow shall be at least the value in Column 2 as determine from Table 8.2.1.3.A. For all other occupancies the total daily design sewage flow shall be at least the value in Column 2 as determine from Table 8.2.1.3.B. Where the building contains more than one establishment, the total daily design sewage flow shall be the sum of the total daily design sewage flows for each establishment. 			
	4. Where the occupancy is not listed in Table 8.2.1.3.B the highest of the metered flow data from at least 3 similar establishments shall be acceptable to determine the total daily design sewage flow.			
	Note: the maximum daily sewage flow is 10,000 litres per day.			
Clearance Distances	The clearances for the Enviro-Septic [®] System are governed by the Ontario Building Code. The Advanced Enviro-Septic [®] pipes, as measured from the center of the pipes, shall meet the clearance distances detailed in Table 8.2.1.3.B, of the Building Code.			
Evaluating the Native Soil Permeability	The soil's ability to infiltrate treated effluent is critical to a successful onsite septic system installation. The ability to infiltrate treated effluent will determine the size of the contact area which will distribute the treated effluent to the natural soils. The soils capacity to infiltrate treated effluent is determined by the percolation time (T) in min/cm of the native soil.			

Basic Profile of the Enviro-Septic System The rows of Advanced Enviro-Septic[®] pipes must be installed in a layer of System Sand, following the specifications shown in Figure 5.

Notes: (1) At the edge of the system contact area, the minimum distance from the centre of the pipe to the edge of the System Sand needs to be 0.45 m.

(2) The layer of the System Sand above the Advanced Enviro-Septic Pipes added to the backfill on top of it needs to be as least 300 mm thick (i.e. If the sand layer above the pipes is 100 mm, the backfill needs to be 200 mm thick \rightarrow 100 mm + 200 mm = 300 mm).

Separation	The percolation time of the native soil will determine the minimum clearances from the bottom of the Enviro-Septic [®] System (infiltration area) to the high groundwater table, bedrock or clay with a percolation time $T > 50 \text{ min/cm}$. The table below shows this in more detail.			
Table 2	Minimum Vertical Separation as measured from the bottom of the Enviro- Septic System Sand to	Percolation Time (T) of natural soil		
		T ≤ 6 min/cm	6 < T ≤ 50 min/cm	T > 50 min/cm
	 High ground water table Bedrock Soil with a percolation time (T) greater than 50 min/cm. 	600 mm	450 mm	600 mm
In ground or Above Ground System	Taking into consideration the properties of the soil, the depth of soil before getting to the position of the high-water table, the rock or soils with T time greater than 50 min/cm, determine if the system will be in-ground, partially raised or raised system.			
Sizing the System	The size of the Contact Area is determined using the formulas presented in the next section. Adjust the configuration of the Enviro-Septic [®] System to fit the constraints of the site and to respect the minimum spacing requirements between pipes, the clearance distances of the OBC and the minimum infiltrative surface required to properly infiltrate the treated effluent.			
Informing the Client	 When a septic system is being planned, it is important to have a good discussion with the client to determine his/her expectations: Future home renovation or addition to the building. Any plans they have for the site i.e. pool, garden, patio etc. Site aesthetics. Maintenance and annual costs associated with the Enviro-Septic System. 			

Section D - Enviro-Septic® Layout and Sizing

Procedure	The Enviro-Septic [®] System can be installed as an in-ground system, a partially raised system or as a raised system. The site conditions will determine how the system will be installed.		
	There are three main steps in sizing this system:		
	• Determine the dimensions o	e. vanced Enviro-Septic [®] pipes required. f the Enviro-Septic [®] System and the roperly infiltrate the treated effluent.	total footprint of
Septic Tank Sizing	dispersal. As such, the septic tank	gned to receive septic tank effluent f requires no specific upfront treatme . All raw sewage will enter into a sep e Ontario Building Code.	ent for incoming
	wastewater and 3 days retention time also have two compartments as require Please note that the effluent filter up	we a minimum of 2 days retention tin for non-residential sewage flows. The red by the OBC and be equipped with a used must not hinder the free passage ocal distributor for more information.	e septic tank shall an effluent filter.
	At no time shall the septic tank be less than 3,600 L working capacity as stated in the OBC Clause 8.2.2.3.		
	Please contact Make-Way Environm restaurants, commercial, buildings, E	ental for guidelines on all non-residentc.).	ntial projects (i.e
Number of Advanced Enviro-Septic [®] Pipes	This step applies to all options for the Enviro-Septic [®] System. Each section of Advanced Enviro-Septic [®] pipe (AES) has the capacity to treat 126 L of wastewater per day. Therefore, the formula to determine the minimum number of Advanced Enviro-Septic [®] pipe (N _{AES}) required is $Q/126$.		er day. Therefore,
		$N_{AES} = Q/126$	(1)
	The number of Advanced Enviro-Septic [®] pipe obtained must be rounded up at all time.		
	As each section of pipe is 3.05 m in length thus the total linear length of pipe is the number of pipes multiplied by the length.		ipe is the number
	E.g. For a 3 bedroom house:	Q = 1600 L/day N _{AES} = 1600 / 126 = 12.7 AES.	
	Rounded up, it gives a minimum of 1	3 AES required. The minimum length 13 x 3.05 = 39.65 m of pipe.	of pipe is:

Minimum / Maximum Length of Row	To maintain efficient effluent cycling, the minimum length of a row of Advanced Enviro-Septic [®] pipes is 6.1 m and the maximum length is 30 m.
Enviro-Septic [®] Contact Area Sizing	The Enviro-Septic [®] contact area is the interface of the base of the Enviro-septic [®] System and any imported sand with the native soil.
	The Enviro-Septic [®] contact area is obtained from the larger of two possibilities:
	• <u>Minimum evacuation surface (S_E)</u> : the minimum surface required to evacuate the water from the Enviro-Septic [®] System.
	• <u>Minimum surface for spacing requirements (S_{SR})</u> : the minimum surface calculated using the minimum spacing required between and around the length of a row of Advanced Enviro-Septic [®] pipes to properly install

1st possibility: Minimum evacuation surface (S_E)

the System Sand.

The minimum surface required to evacuated the treated effluent from the system is calculated from formula 2:

$$S_E = QT/400 \tag{2}$$

Where:

- S_E is the contact area in m² between the base of the sand layer and the underlying native soil,
- Q is the total daily design sewage flow in litres, and
- T is the percolation time of the underlying native soil in min/cm to a maximum of 50 min/cm.

2^{nd} possibility - Minimum surface for spacing requirements (S_{SR})

In some cases, the minimum excavation surface/contact area is not sufficient to accommodate the minimum spacing requirements for the Enviro-Septic[®] pipe. In these cases, the area must be increased to accommodate the spacing requirements.

The area required is based on the number of rows within the system and the extension of System Sand material around the limits of the pipes. The recommended minimum pipe spacings are the following:

Acronym	Description	Minimum horizontal spacing (m)
Ecc	Centre to centre spacing from one row of pipes to the next.	0.45
$\mathbf{E}_{\mathbf{L}}$	Lateral extension distance from the center of the last lateral row of pipes to the limit of the Enviro-Septic [®] System.	0.45
$\mathbf{E}_{\mathbf{E}}$	End extension distance from the end of a row of pipes to the limit of Enviro-Septic [®] System.	0.30

Table 3.1

The Enviro-Septic[®] System is based on a standard rectangle. However, other special configurations can be permitted providing that the flow is properly distributed between pipes and over the infiltration area. Wherever possible the design should be based on Length > Width. The dispersal surface/contact area shall have the long dimension perpendicular to the direction in which effluent entering the soil will move horizontally.

Following the requirements of the Ontario Building Code no row is to be greater than 30 m in length.

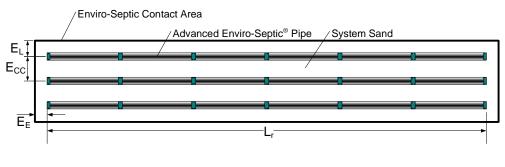


Figure 6

Therefore, the minimum surface for spacing requirement is:

$$\begin{split} S_{SR} &= W_{SR} \times L_{SR} \\ L_{SR} &= L_r + (2 \times E_E) \\ W_{SR} &= (E_{cc} \times (N_r - 1)) + (2 \times E_L) \\ S_{SR} &= [L_R + (2 \times E_E)] \times [(E_{cc} \times (N_r - 1)) + (2 \times E_L)] \end{split}$$
(3)

Where:

• S_{SR} is the minimum surface/contact area for spacing requirement

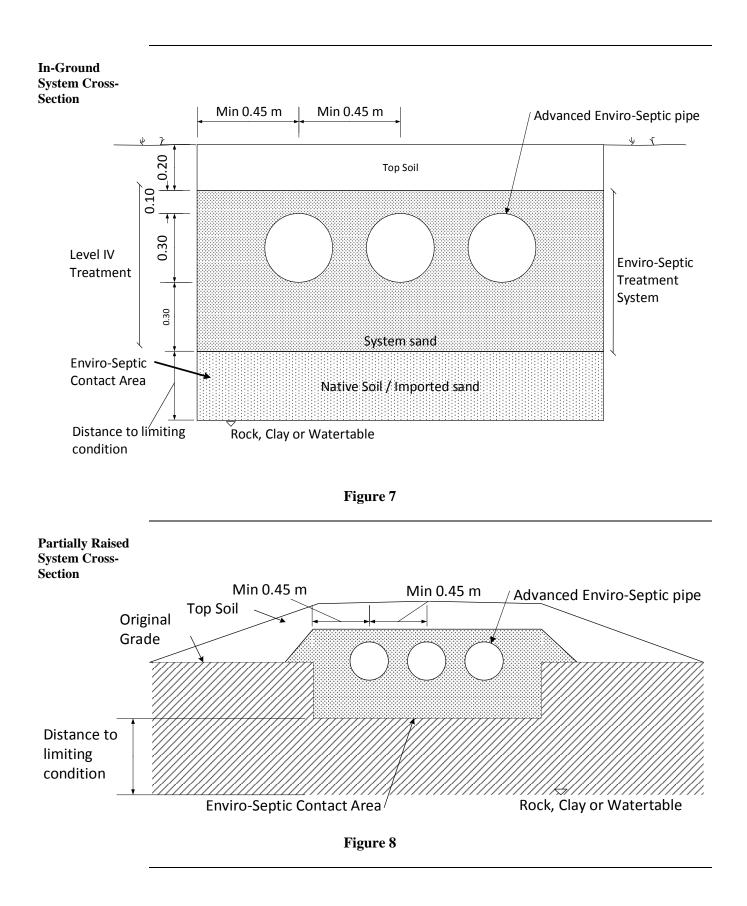
- L_{SR} is the length of the minimum surface/contact area for spacing requirement
- W_{SR} is the width of the minimum surface/contact area for spacing requirement
- N_r is the number of rows of Enviro-Septic[®] pipe

The Enviro-Septic[®] minimum contact area is the larger of S_E or S_R .

If $S_{SR} > S_{E_{A}}$	$S_{CA} = S_{SR}$
If $S_{SR} < S_E$,	$S_{CA} = S_E$

Note : When the spacing between the Enviro-Septic length (E_{cc}) is up to 0.9 m, imported sand could be added between the Enviro-Septic length instead of using System Sand (see figure 10).

Design CriteriaThe Enviro-Septic® System can be installed directly in-ground or partially raised when the
site conditions permit it. The percolation time of the native soil must be 50 min/cm or less.


When the site conditions do not allow the system to be installed in-ground or partially raised, it can be installed above ground, as a fully raised system.

The vertical separations set out in the BMEC approval must be met, as detailed in Table 4 in this manual.

The table below displays the design criteria required for in ground, partially raised or above ground systems:

Table 4

	Percolation Time (T) of native soil		
Design criteria	T ≤ 6 min/cm	6 < T ≤ 50 min/cm	T > 50 min/cm
Type of installation	In ground, partially raised or fully raised systems		Fully raised systems
Minimum Enviro-Septic [®] Contact Area (m ²)	QT/400 or Min. AES Spacing requirement (Formula 2)		
System Sand layer under Advanced Enviro-Septic [®] pipe	300 mm		
System Sand layer above Advanced Enviro-Septic [®] pipe	100 mm minimum		
Top soil permeable to air on top of the System Sand	200 mm minimum		
Minimum Vertical Separation as measured from the bottom of the Enviro-Septic System Sand to: •High ground water table •Bedrock •Soil with a percolation time (T) greater than 50 cm/min.	600 mm 450 mm		600 mm

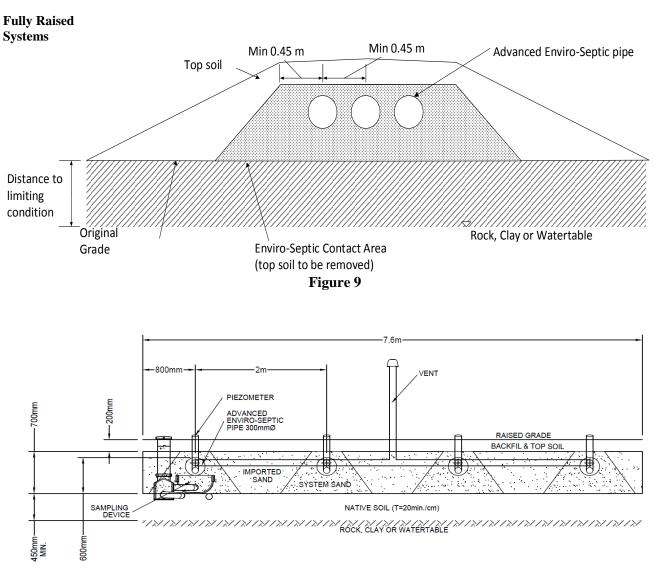
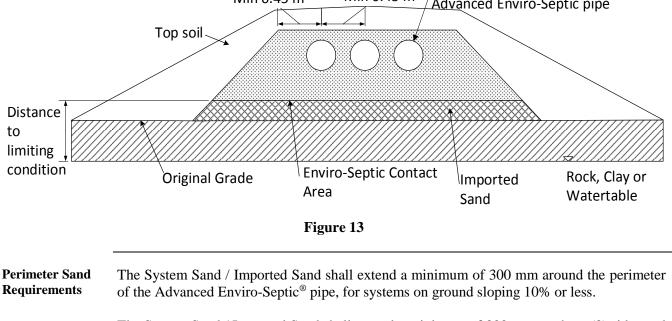


Figure 10

Section E - General Design Criteria

Background	This section presents the basic design criteria for an Enviro-Septic [®] System.		
Row Orientation	Rows of Advanced Enviro-Septic [®] pipes must be laid level and should run parallel to contours (perpendicular to sloping terrain), where possible.		
	If known, the Advanced Enviro-Septic [®] pipes should be placed perpendicular to the hydraulic gradient of the ground water.		
Preferred Row Length	In general, fewer long rows are preferable to a greater number of short rows. Longer rows provide more efficient settling of solids. In addition, longer more narrow systems reduce the potential for ground water mounding.		
Minimum / Maxi-mum Row Lengths	The minimum row length is 6.1 m of Advanced Enviro-Septic [®] pipe and the maximum length is 30 metres.		
3.05 Metre Increments Work Best	It is easier for the installer if systems are designed in 3.05 m increments since Advanced Enviro-Septic [®] pipe is 3.05 m in length. However, the pipe is easily cut to any length necessary with a sharp knife.		
Row Elevations	For sloping systems, provide elevations on the design drawings for each pipe row of the system.		
Septic Tank and D-Box Elevations	The pipe between the building and the septic tank should have a 2% minimum slope. The pipe coming out of a septic tank or a D-Box must have a downward slope of a minimum of 1%.		
System Sand on the Installation Perimeter	Systems sloping 10% or less require the System Sand area to extend a minimum of 300 mm around the perimeter of the Advanced Enviro-Septic [®] pipes.		
	Min 0.3 m→ ←		
	Septic Tank		
	Min 0.3 m System Sand Area		
	Figure 11		

Systems sloping greater than 10% require the System Sand area to extend a minimum of 300 mm on three sides and 1.2 m beyond the Advanced Enviro-Septic[®] pipe on the down-slope side.


Sloping Systems The percentage of slope refers to the slope of the Enviro-Septic[®] System, not the existing terrain. The slope of the system and the existing terrain are not required to be equal. A sloping system can be designed in multiple sections, with more than one distinct slope and/or center-to-center pipe spacing in the same system. Maximum slopes are 1 unit vertical to 4 units horizontal (OBC 8.7.2.1) The installer must give the client a copy of Enviro-Septic[®] User Guide. The User Guide User Guide describes in detail the proper instructions and procedures that must be followed so that the Enviro-Septic[®] System continues to operate properly. The User Guide has details on topics such as abusive substances, additives, and constant discharge. Suggested tank pumping and inspection schedules are also detailed. **Regulations in** When designing an Enviro-Septic® System, it is important to ensure that the system is Effect designed according to the Ontario Building Code and the BMEC Authorization, as well as this manual

Section F - Sand and Fill Requirements

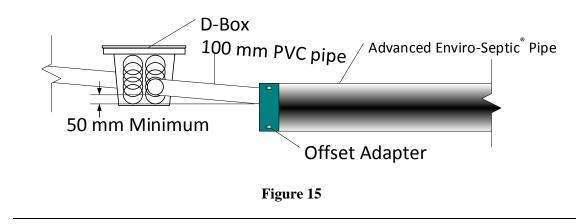
Introduction	This Section describes the sand requirements for the Enviro-Septic [®] System.		
System Sand	All Enviro-Septic [®] System configurations require System Sand to surround the Advanced Enviro-Septic [®] pipes by at least		
	 300 mm below the pipes 75 mm on both sides 100 mm above. 		
The System Sand can be natural sand, or filter sand that has been modified, and it mus the requirements stated below:			
	 Effective diameter (D₁₀) between 0.2 and 0.5 mm; Coefficient of Uniformity (Cu) ≤ 4.5; Less than 3% of material smaller than 80 µm; and Less than 20% of material larger than 2.5 mm. 		
	The system sand required for the Enviro-Septic [®] treatment and distribution system falls into the sand spectrum of the Ontario Building Code filter sand, but not the whole range. By comparison, Ontario Building Code filter sand material has an effective diameter of between 0.25 and 2.5 mm with a Coefficient of Uniformity of less than 4.5. There is no discussion of fines and large particle content. Therefore, filter sand may meet the specifications of the system sand but it may need to be modified to meet the specifications as stated above.		

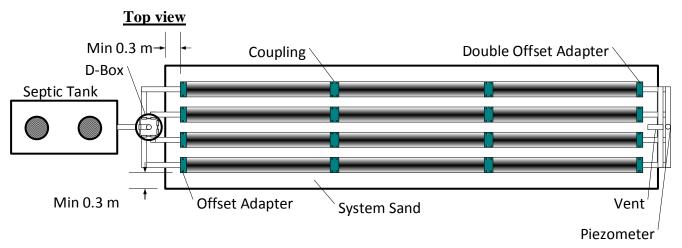
Contact your Enviro-Septic distributor for a list of System Sand suppliers.

Imported Sand
Fill to Achieve
Vertical
SeparationFor partially raised and fully raised systems, it is possible to achieve vertical separation by
adding a layer of imported sand. Proper evaluation needs to be done to verify that the native
soil layer will have the capacity to evacuate the treated water. The imported sand shall have a
percolation rate of 6 to 10 min/cm, with less than 5% fines passing the 200 sieve.Min 0.45 mMin 0.45 mMin 0.45 mMin 0.45 m

The System Sand / Imported Sand shall extend a minimum of 300 mm on three (3) sides and 1200 mm beyond the Advanced Enviro-Septic[®] pipe on the down-slope side, for systems on ground sloping greater than 10%.

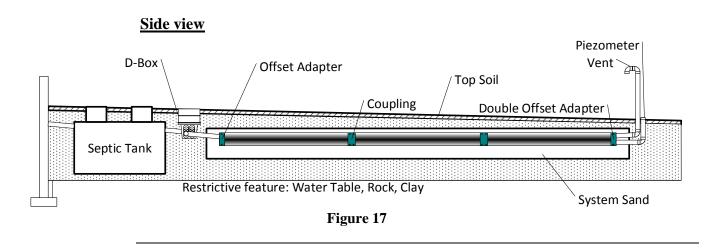
No System shall be installed in an area in which the original ground has a slope in excess of 25% (1 vertical:4 horizontal).

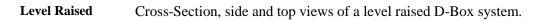

Section G - System Configurations

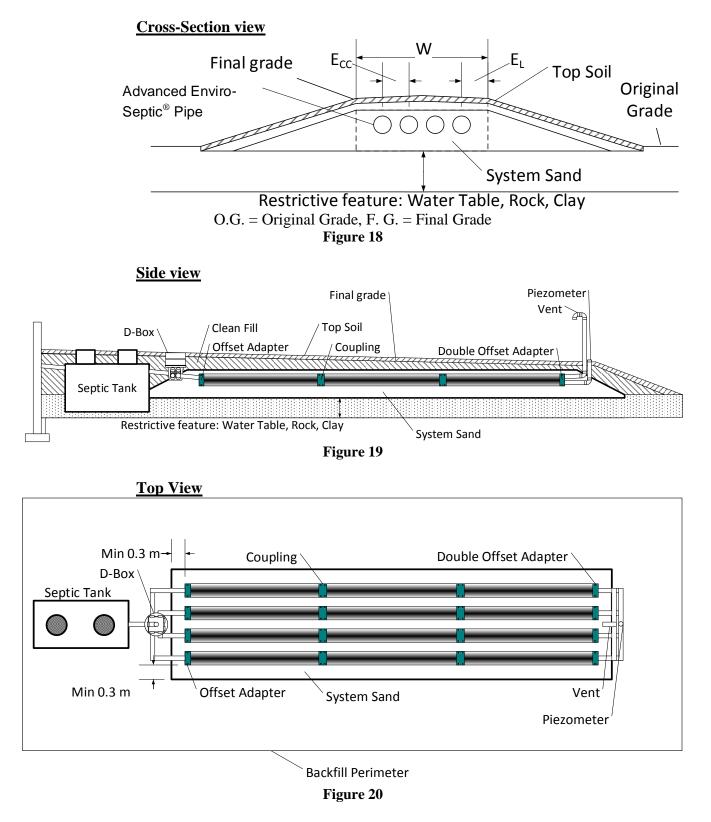

Introduction	Enviro-Septic [®] Systems may be designed as a standard rectangle or in a wide variety of unusual shapes such as curved, trapezoidal, or L-shaped to provide optimum design flexibility to address the challenges of each site. The following Sections describe the variations of the flow splitting devices and the design rules associated with them as well as some different system configurations.
Row Orientation	Enviro-Septic [®] rows must be laid level and should run parallel to contours (perpendicular to sloping terrain), where possible.

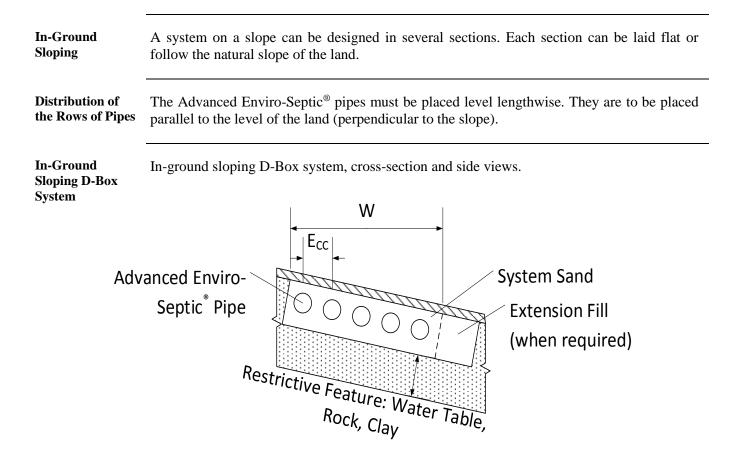
System Using a Distribution Box (Parallel Distribution)

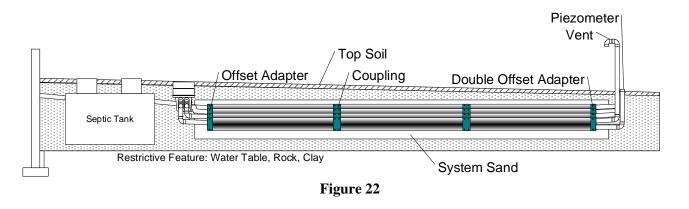
Definition	•			nced Enviro-Septic [®] Pipes of equal bugh a distribution box.
Equalizers ^{тм} Required	Equalizer [™] , or equiva	alent, in their outle	ts.	mp or gravity systems require an are placed on a stable soil base or
D-Box Diagram	This is a top view of pipes. D-Box Septic Tank Effluent	a basic system w Coupling \	ith a distribution	box. This system has four rows of Double Offset Adapter
		Offset Adapter	System Sand Figure14	Vent

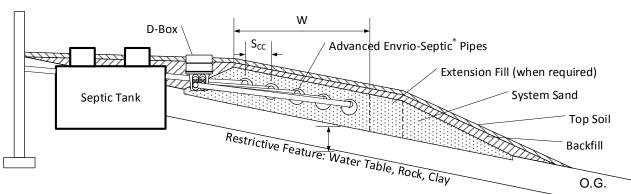

D-Box Pipe Drop This side view shows the minimum drop from a D-Box to a row of pipes. The minimum drop between the D-Box and the Enviro-Septic pipe needs to be 1% and at least 50 mm.

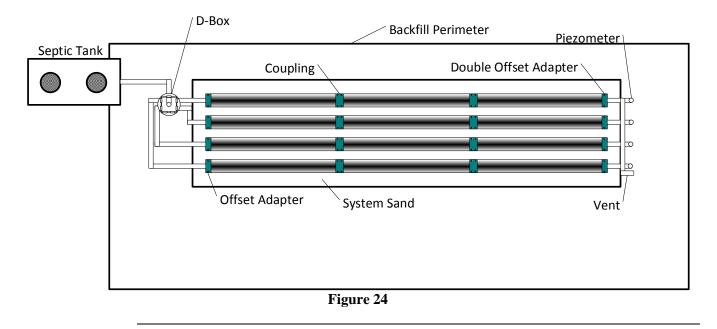





Level in-Ground Top and side views of a level in-ground D-Box system.

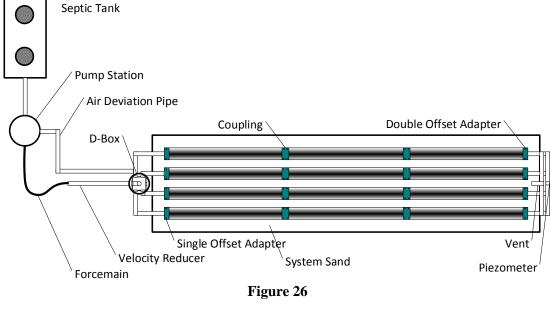




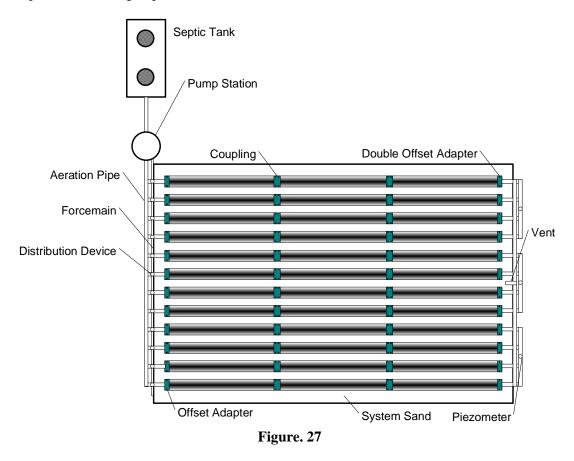


Cross-section and top views of a Raised Sloping D-Box system.

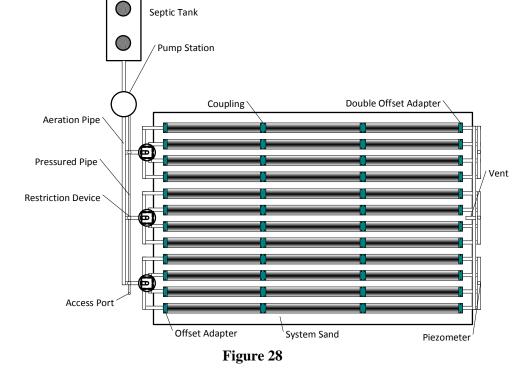
Raised Sloping

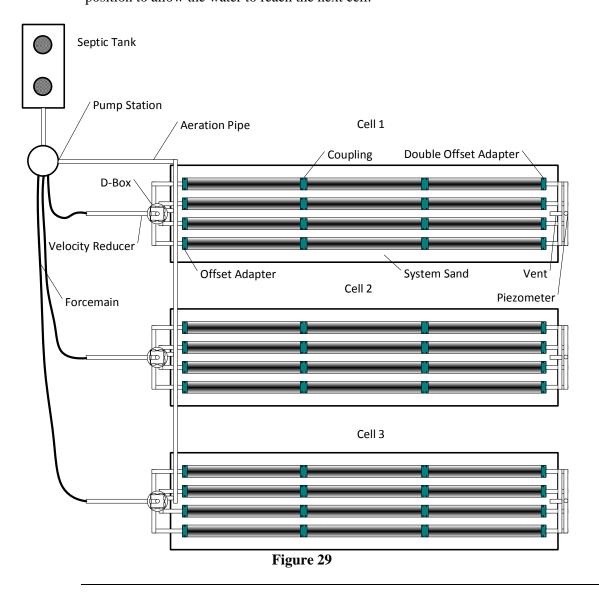

Section H - Flow Distribution Device Configurations

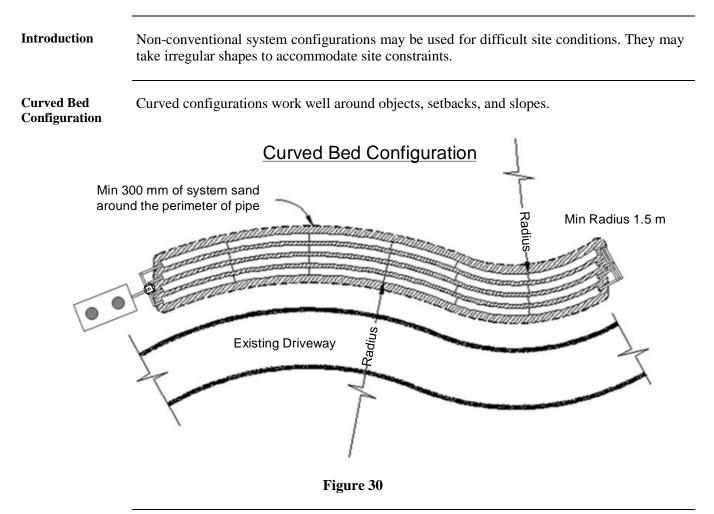
Context	The Enviro-Septic [®] System uses multiple rows of Advanced Enviro-Septic [®] pipe in parallel to treat septic tank sewage effluent. In order for the system to function properly the effluent must be distributed equally to each row of Advanced Enviro-Septic [®] pipe.
	This can be done by using a distribution box with equalizers. Other techniques are used and are discussed within the next Sections.
	Where the total length of pipe required is 150 m or more, the sewage system shall have at least 1 pump contained in a dosing tank. ²
Distribution Box Device	A distribution box with equalizers can be used to distribute the septic tank effluent to each row. The distribution box should be accessible from grade.
	For this type of installation, the designer must consider the following:
	• The dimensions of the distribution box to be used. The inlet should be 50 mm above the outlets of the box.
	 The use of equalizers for each outlet is required to ensure proper distribution. Wherever possible, the use of a vertical tee is required on the inlet pipe. The tee is positioned in the middle of the box allowing effluent to drain down at the bottom and the air to circulate at the top. Place the distribution box in an area where the effluent will be able to flow by gravity.
	 Minimize the length of the feed piping from the distribution box to each row. A minimum 1% downward slope is required for all piping. The pipe slope is toward the Advanced Enviro-Septic[®] pipe (minimum 50 mm).
	<image/>


Figure 25 – 7 hole D-Box with T in vertical position (left) and with internal insulation (right).

² See OBC 8.6.1.3. (1)


Mandatory Equalizers	Any distribution box used to divide the septic tank effluent either from a pump station, or directly from the septic tank, must be equipped with equalizers on every exit pipe.	
Velocity Reduction/ Equalizer	If piping from the septic tank to the Advanced Enviro-Septic [®] pipe is excessively steep, a velocity reducer at the system inlet is necessary. A distribution box with a baffle or an inlet tee may be an adequate velocity reducer.	
	<u>Note</u> : An Equalizer TM is limited to a maximum of 38 liters / minute in gravity systems and 76 liters / minute in pumped systems.	
System with a Pump Station	If the Advanced Enviro-Septic [®] pipes are above the septic tank outlet a pumping station will be required to distribute the septic tank effluent to the rows of Advanced Enviro-Septic [®] pipe.	
	A Velocity Reduction Device must be used to reduce the velocity of the effluent entering the distribution box. Sections J and K describe the pump station and ventilation requirements in more detail.	
	Septic Tank	


Low Pressure
DistributionThe pump station can be combined with flow restricting devices located on the feed piping to
distribute the flow to each row. That is what we call "Low Pressure Distribution System".
An air vent bypass or a high vent must be installed to permit the circulation of air. Section K
explains the venting requirements in more detail.


Hybrid Low
Pressure
Distribution
SystemFor systems with a large daily flow, a hybrid system can be used. It consists of a low-
pressure distribution system and the feed piping that sends effluent to a distribution box for
each section.SectionSection

Multiple CellsAnother variation consists of using distribution valve to distribute the water into 2 to 6 cells
of Advanced Enviro-Septic® pipes. These mechanical rotating distribution valves are
available with 2 to 6 exit positions. With each cycle of the pump, the rotating valve turns one
position to allow the water to reach the next cell.

Section I - Special Configurations

AngledAngular configurations can include one or more angles. Rows are angled by bending pipes.ConfigurationThe shortest acceptable curve radius for Enviro-Septic[®] is obtained by bending a 3 m pipe
length at a right angle.

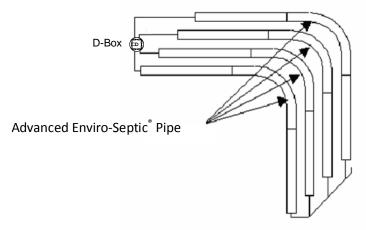
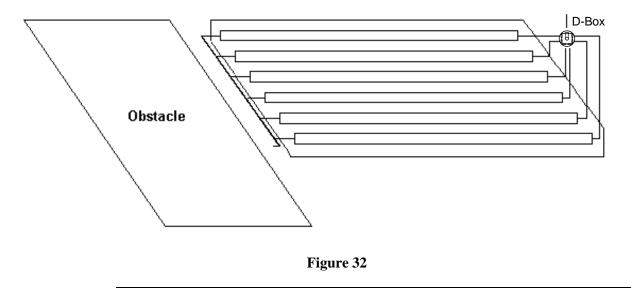



Figure 31

TrapezoidThe following system uses a trapezoid configuration to get around an obstacle or to adapt to
a slope.

Section J - Pump and Dosing System Requirements

Introduction	Pump systems typically supply wastewater effluent to Advanced Enviro-Septic [®] pipe using a forcemain (pressured line), a distribution box and a velocity reducer when site conditions do not permit a gravity system.	
Differential Venting	All pump systems must use differential venting. Reference: See Section K, "Venting Requirements."	
Velocity Control	Never pump septic tank effluent directly into the Advanced Enviro-Septic [®] pipes. Install a velocity reducer prior to the distribution box. Forcemains must discharge into a 100 mm pipe that is 3 m long. The change in diameter reduces the pressure in the pipe. If the distribution box is not equipped with a baffle, then the 100 mm pipe must be terminated with a vertical tee fitting inside the D-Box. $ \underbrace{Forcemain}_{forcemain} \underbrace{Forcemain}_{given a long} \underbrace{Forcemain}_{give$	
Maximum Loading Rate per Pumped Cycle	The maximum volume of effluent pumped per cycle per length of Advanced Enviro-Septic [®] Pipe (3.05 m) is 55 litres. Taking into consideration the daily design sewage flow, the volume of wastewater per cycle should be specified to be 6 to 8 cycles per day.	
Maximum Flow in Litre per Minute	Equalizers An equalizer used in a system with a pump station cannot receive more than 75 liters per minute. Rows Each row in a system using a pump and a distribution box cannot receive a flow higher than 75 liters per minute.	

A system has 6 rows of 6 Advanced Enviro-Septic[®] pipes each for a total of 36 pipes. Example What is the maximum volume allowed per pumping cycle? Max Volume / Cycle = number of pipes x 55 L/pipe = 36 x 55 = 1440 litres/cycle What are the minimum and maximum volume per cycle that should be used? System Capacity= Number pipes. x 126 L/pipe = 36 x 126 = 4536 litres/day Volume for 6 pumping cycles Cycle / Day = System capacity / Number of cycles = 4536 / 6= 756 L/cycleVolume for 8 pumping cycles Cycle / Day = System capacity / Number of cycles = 4536 / 8= 567 L/cycle Minimum volume per cycle: 567 L / pump cycle Maximum volume per cycle: 756 L / pump cycle What will be the flow per equalizer and per row if a distribution box with 6 exit equalizers is used and the flow of the effluent pump is 4.5 litres per second? = 60 Sec/min x 4.5 L/secFlowStation = 270 L/min FlowEqualizer = FlowStation / Number Equalizer = 270 L/min / 6 equalizers= 45 L/min/equalizer (less than 75 L/min – OK)

Section K - Venting Requirements

General RuleAll Enviro-Septic® Systems require the use of a vent pipe as well as appropriate
aeration pipes. Locate vent openings to ensure air is drawn completely through each
row or section of Advanced Enviro-Septic® pipe.When to VentA 100 mm vent pipe is required for every 300 metres of Advanced Enviro-Septic®
pipes. If necessary, a single 150 mm vent opening may be installed in place of up to
three 100 mm vent openings.
Many pipe rows can be connected together with an aeration pipe (vent manifold), as
shown in the following figure.

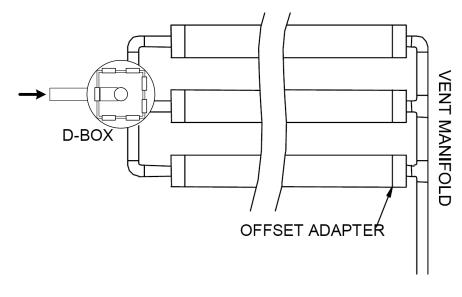
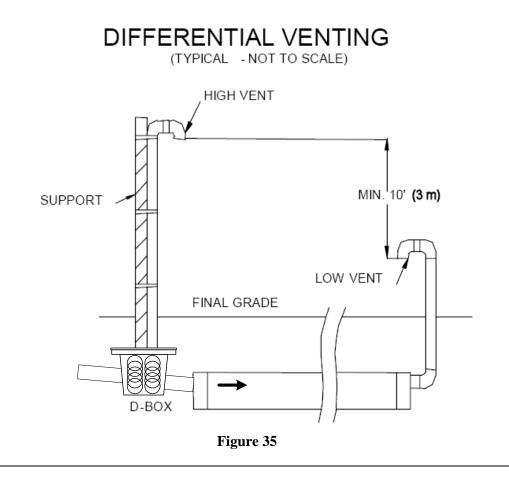


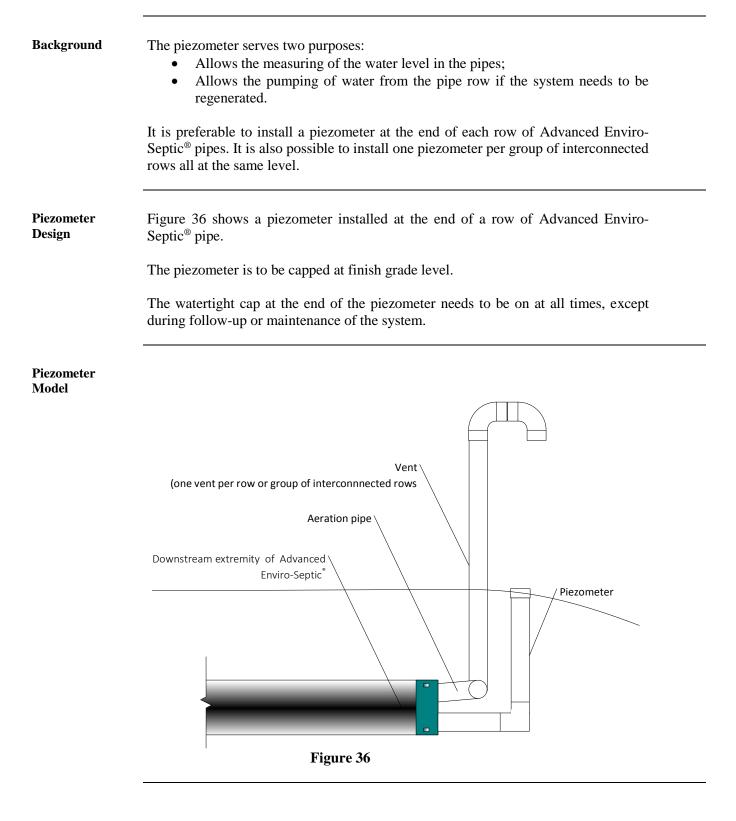
Figure 34

Design Standards The entry vent (located after the Advanced Enviro-Septic[®] pipes) must meet the following standards:

- Must be high enough to rise above snow during winter (min 1.2);
- Can be hidden among trees, located at fence post, Etc.;


The entry vent must be at least 3 m lower than the exit vent.

All vents shall conform to the Ontario Plumbing Code (OBC part 2).


Note: The pipe connected to the vent must always pass through the upper opening of the double offset adapter.

Vent Piping Slope	Vent piping should slope 1% downward toward the Advanced Enviro-Septic [®] pipes to prevent moisture from collecting in the piping and blocking air passage. The aeration circuit must be continuous between the entry and exit vent. The vent installed at the end of the rows of pipes acts as the entry point. The most common setup is when the air flows through the Advanced Enviro-Septic [®] pipes, the D-Box and the septic tank and exits through the vent stackof the residence.	
Air Flow Circuit		
	 On systems that use a pump station or low-pressure distribution, special considerations need to be taken to ensure that the air flows efficiently through the system. This leaves the designer with 2 options: Install a shunt pipe between the treatment system and the pumping station; Install an additional vent pipe (see next paragraph). 	
Vent Locations	Enviro-Septic [®] Systems can be vented at the following areas:	
	Entry vent (Low) located downstream from the system, through the upper opening of a double offset adapter installed at the end of a section or row.	
	 The vent pipe is to be connected to the air manifold between two pipe rows. If the vent is located away from the Advanced Enviro-Septic[®] pipes, use an open T-shaped fitting at the base of the aeration pipe to prevent condensation build up. 	
	Exit vent (High) located upstream from the treatment system.First choice is to use the building vent stackO:	
	 Vent pipe connected on the sewer pipe between the house and the septic tank. This vent stack borders the exterior wall of the house and rises above the roof. It is not recommended to put a vent on the septic tank because of potential odour problems. 	
	 And if the use of a shunt pipe is impossible: Install a vent onto one of the distribution box outlets (if available) or close to the distribution box onto one of the feed pipes from the rows of Advanced Enviro-Septic[®] pipes. 	
	The designer must make sure that there is a well-vented line between both high and low vent pipes.	

DifferentialDifferential venting is the use of high and low vents in a system. High vents are
connected to the distribution box and low vents are connected to the opposite end of
the system. This arrangement enhances the circulation of air throughout the entire
system.

Section L - Piezometers

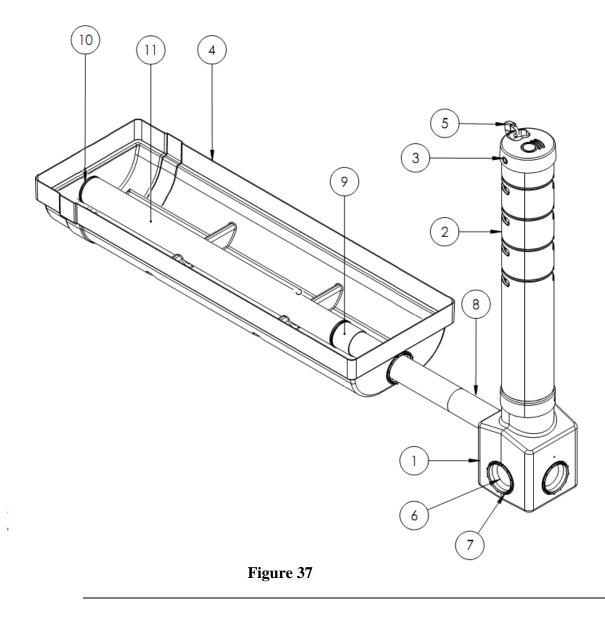
Section M - Sampling device

Background In ontario, it is required that each Enviro-Septic wastewater treatment system have a device to allow sampling of the quality of treated wastewater leaving the system.

Influent Sampling

Context The Enviro-Septic[®] System has been in use in North America since the late 1980s and has been tested by independent agencies over the years.

The Standards Council of Canada has authorized the BNQ in Canada to create a standard of sewage wastewater treatment plants for the onsite sewage industry and has authorized them to perform testing of technology and equipment in accordance with this standard. This standard was developed after and adds to the NSF-40 standard which was developed by NSF international³.


The 6 months of testing conducted by an independent agency, the BNQ, reveals that the Enviro-Septic[®] System produces an effluent of better than 10 mg/l of CBOD5 and 10 mg/L of TSS respectively when it receives domestic wastewater.

³ NSF Standard 40 is for residential wastewater treatment systems. The NSF has a product certification accreditation from the Standards Council of Canada. This accreditation attest to the competency of services provided by NSF and compliance with established national and international standards for third-party certification. The NSF-40 is a standard for residential wastewater treatment systems.

Enviro-Septic® Influent Sampling	Sampling of sewage influent is used to confirm that the facility / occupant is or is not generating sewage within the acceptable organic loading range and that the Enviro-Septic [®] received the influent it is design for and therefore produces a treated effluent meeting the regulation requirements. Influent sampling is not a requirement of the BMEC authorization.
	The influent sampling is intended to demonstrate to the user of the system that their activities and behaviours in the facility are consistent with generally accepted use and will not cause harm to the treatment system and the environment.
	With such an option, sampling is conducted by drawing wastewater material from the "clear zone" near the exit of the septic tank. The sample is tested for CBOD5 and TSS by an accredited laboratory testing facility. Sample material is to be handled, stored and transported in accordance with protocols and standards set by the testing laboratory.
	The samples are tested to determine the organic load (mass loading) entering the Advanced Enviro-Septic [®] pipes. Results of the test that show a CBOD5 of less than 275 mg/L and TSS of less than 200 mg/l respectively confirm acceptable occupants / user behaviour. Values greater than those limits indicated that the septic tank needs to be pumped out immediately or that the activities in the facility need to be reviewed and altered.
Hydraulic Loading	Hydraulic Loading (daily sewage flow rate) is another factor that needs to be monitored to show that the system is used properly and therefore will perform according to the treatment levels expected.
	On a single visit, it will be difficult to determine if the hydraulic loading is within the daily design sewage flow. Other than observation that the system is not receiving flow from leaking facility fixtures or septic tank, the technician will not be able to evaluate the hydraulic loading to the system unless a flow measuring device is installed in the system.
	If the Enviro-septic [®] System includes a pump station, it can be used to install a flow measuring device. A water meter can also be installed on the main water entry in the mechanical / utility room to measure the amount of water use and the volume of wastewater generated.
Influent Sampling and Hydraulic Loading Combination	The combination of influent sampling and hydraulic loading measurement will indicate if the system is being used within the limits. If the Enviro-Septic System works within these limits, it means that the installation is operating in similar conditions to the systems that were tested and certified. Therefore, the system treats the wastewater at the expected treatment levels.

Treated Effluent Sampling

Context	The Enviro-Septic® System requires the installation of an effluent sampling device. The following paragraphs describe the sampling device to be used.	
Sampling Device Description	The sampling device includes two major components:	
	CollectorSample port	
	The collector consists of a thermoformed trough in which a collector pipe is installed. The pipe is then covered with a layer of System Sand.	
	The collector is installed at the bottom of the System Sand directly below a length of Advanced Enviro-Septic [®] pipe. The collected treated effluent is routed towards the sample port through a PVC pipe. The sample port is used to take the treated effluent samples for analysis. See Figure 37 for a detailed diagram of the sampling device, explaining the 11 components of the system.	
	 Sample port Access pipe with an adjustable section that can be cut to adjust its height depending on the depth of the backfill Lockable cover Collector Padlock or plastic seal (optional) Polylok[®] pipe Adapter to connect the 100 mm PVC pipe, one on each side Adapter locking ring PVC pipe Fitting and adapter to connect the PVC pipe and the collector pipe End cap for the collector pipe Collector pipe for treated effluent 	

Collector The collector is installed at the bottom of the System Sand directly below a length of Advanced Enviro-Septic[®] pipe. A collector pipe (drainage pipe) is placed at the bottom of the collector, held in place by half-moon mounts and stabilized with System Sand. This pipe is connected to a PVC pipe with an adapter. The PVC pipe exits the collector wall and is connected to the top opening in the base of the sample port.

Collector Pipe The collector pipe to collect the treated effluent at the bottom of the collector is a 100 mm diameter Big 'O' perforated drainage pipe wrapped with filter sock⁴ (or its equivalent – see Table 5). Filter sock is a one-piece polyester sock that fits over the

⁴ The AOS (Apparent Opening Size) of the drainage pipe filter sock is 600 microns. While there are other styles of geotextile-wrapped pipes available on the market, they cannot be used in this application due to their opening sizes that range between 90 and 150 microns.

corrugated pipe to prevent sand fines from entering into the pipe.

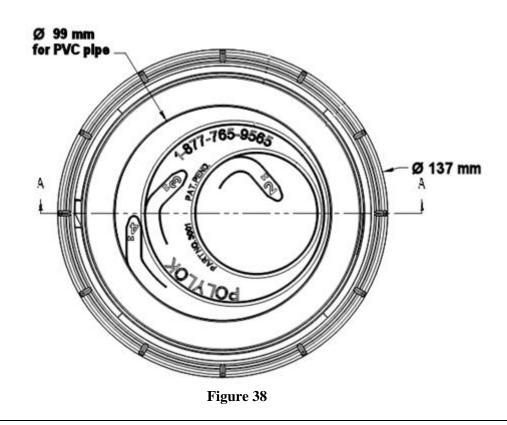
The filter sock is held in place by an end cap at one end of the pipe and by an adapter connecting the collector pipe to the PVC pipe at the other end.

		2.10	
•	Drainage Pipe	End Cap	Coupler
Armtec	Big 'O' Ø100 mm with	Internal end cap,	Internal coupling,
	white filter sock ⁵	Ø100 mm	Ø100 mm
Soleno	Available on special order	1B0045, internal end cap,	1M0040, internal
	only ⁶	Ø100 mm	coupling, Ø100 mm
Hancor	Heavy Duty Ø100 mm	0433AA, internal end cap,	0417AA, internal
	with black filter sock	Ø100 mm	coupling, Ø100 mm

Table 5Drainage Pipe Equivalents

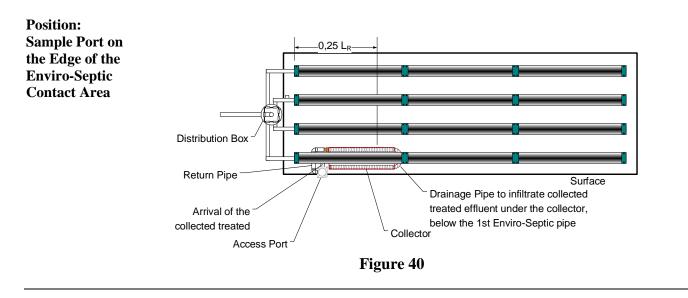
⁵ This membrane is 100% polyester. Use of drainage pipe wrapped in non-woven (matted) membrane is not allowed.

⁶ Soleno drainage pipe is normally wrapped in geotextile membrane only. Such membrane types cannot be used. Sock filter is available on request (special order).


Sample Port The sample port is constructed in two sections: an access port and a water-tight base unit to which inlet and outlet pipes are connected. The two sections are fitted together with the help of a keyway at 1/4 one fourth of the assembly height.

The access port can be easily disconnected from the base unit to get better access to install pipes and adapters.

The base unit has three openings, each with a Polylok pipe adapter. The pipe from the collector is connected to the upper opening in the base unit. One of the two lower openings is used for a treated effluent return pipe. All inlet and outlet pipes must be inserted into the base unit by approximately 25 mm.


The upper end of the access port pipe has four guide notches (horizontal lines on the pipe circumference). During the installation, after the final backfill, the Contractor will shorten the height of the access port pipe, as necessary, by cutting it along one of these notches. The pipe opening must be above the final backfill level to prevent surface water from flowing into the pipe.

Polylok PipeEach of the three openings in the base unit of the sampling device is equipped with aAdapterPolylok pipe adapter. To use one of the adapters, the Contractor removes the Ø99
mm tear-out in the center of the adapter. This operation is similar to the one
performed on the distribution box.

If not extracted for samples, the collected treated effluent that goes through the sample port must be filtered into the soil, as needed. Therefore, the sampling device is equipped with an outlet opening to allow the treated effluent from the sample port to enter in the return and then infiltration pipe, which then routes the treated effluent to the receiving soil. The infiltration pipe is made of \emptyset 100 mm Big 'O' perforated drainage pipe wrapped in filter sock (or its equivalent – see Table 5).
The lockable cover is snapped in place by pushing its two inside knobs into the keyways of the access port pipe. Once installed, the cover is locked with a plastic seal.
 The collector is installed directly below a length of Advanced Enviro-Septic® pipe, to make it easier to collect the treated effluent. The vertical position of the collector is determined taking in account the need to: Drain the collected treated effluent, as needed; Create a step in the sample port to help in taking treated effluent samples. The infiltration pipe is placed directly on the receiving soil and covered with a 100-mm layer of System Sand, over which the collector is installed. The collector is covered with a 300 mm layer of System Sand.
Figure 39 shows the position of the collector and of the bottom drain pipe as well as the thickness of fill material to be used with the sampling device for the Enviro-Septic [®] System. The collector should have a positive slope ($\approx 1\%$) toward the sample port to facilitate the treated effluent movement in that direction.
Advanced Enviro-Septic Pipe

Collector Position	The collector must be installed directly below a side length of Advanced Enviro-Septic® pipe, with its center located at approximately one fourth of the length of the row of Advanced Enviro-Septic [®] pipe from the water inlet end. The collector should be located in such a way that it is at least 30 cm away from a coupling.	
Sample Port Position	The sample port may be located on the inside or outside row of the perimeter of Enviro-Septic Contact Area. The Designer should take into account the diameter of the sample port, which is 225 mm. Thus, it can be installed between rows of Advanced Enviro-Septic® pipe, provided their center-to-center spacing (E_{CC}) is more than 600 mm.	

Installation Guide

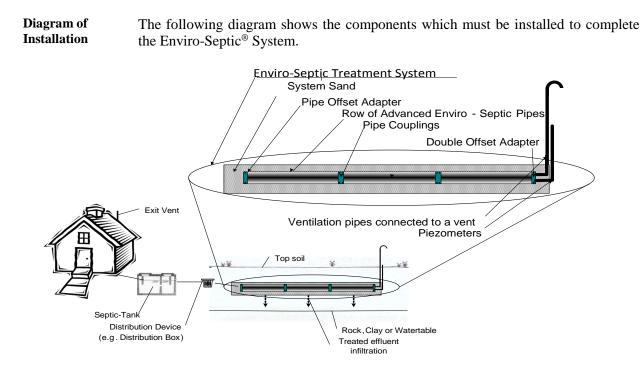
Section N – Description Tag, Handling and Storage

Background	The following paragraphs give information regarding the description tag found on each Advanced Enviro-Septic [®] pipe as well as rules to follow regarding the handling and storing of Enviro-Septic [®] products. Further installation details are available in Section O.
Pipe Description Tag	Each Advanced Enviro-Septic [®] pipe used in an Enviro-Septic [®] System bears a descriptive tag similar to the one below in Figure 41.
	This tag is sewn onto the membrane covering the pipe. It must be present on each pipe at the time of installation. It must be left in place. It is made from non-biodegradable material designed for use in soil.
	Couture vers le haut Este lado hacia arriba
	Advanced Enviro-SepticTM Type:Modelo:Modèle: AES Made in:Echo en:Fabriqué aux: United States:Estados Unidos:Etats-Unis By:Por:Par: Presby Environmental, Inc. 143 Airport Rd, Whitefield, NH 03598 www.PresbyEnvironmental.com (1) 800-473-5298
	Standard/Normas/Normes: The Advanced Enviro-SepticTM pipe can be used to realize a stand alone wastewater treatment system complying with the standard:/ El conducto Advanced Enviro-SepticTM puede ser utilizado en la realización de sistema de tratamiento conforme a la norma;/ La conducto Advanced Enviro-SepticTM puede ser utilizado en la realización de sistema de tratamiento conforme a la norma;/
	La conduite Advanced Enviro-SepticTM peut être utilisée dans la réalisation d'un système de traitement conforme à la norme.' NO-3680-910/2000 #890 (Canada) Other certification pending/Otras certificaciones a venir/Autres certifications à venir. Patent #/Patentes #: 6,461,078; 5,954,451; 6,290,429; 6,899,359; 6,792,977; 5,606,786; 7,270,532 Brevet #: 2,187,126; 2,415,194; 2,187,126; 2,185,087; 2,300,535; 2,286,995; 2,359,255; 2,365,453 Others cending/Others a venir/Autre a venir
	Others pending/Otros a venir/Autres à venir. Note: The Advanced Enviro-SeptioTM pipe must be preceded by a certified septio tank or an appropriate pre-treatment process. Nota: Los conductos Advanced Enviro-SeptioTM deben ser precedidos de una fosa séptica correctamente dimensionada o de una cadena de pre tratamiento adecuada/ Note: Les conduites Advanced Enviro-SeptioTM doivent être précédées d'une fosse septique correctement dimensionnée

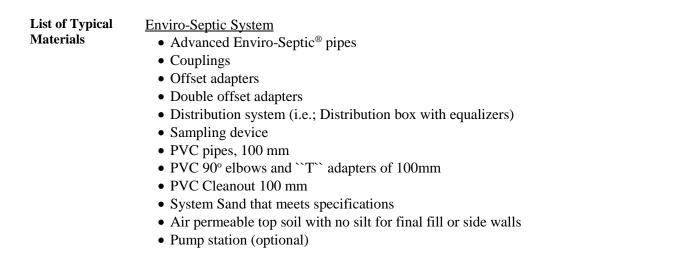
Figure. 41

System Tag

Each Enviro-Septic[®] System must be identified with a specific system tag. This tag will be installed in the sampling device access port. The number shown at the bottom of the tag will help to identify your system.


ou d'une chaîne de prétraitement adéquate

Handling	Advanced Enviro-Septic [®] pipes should be handled with care to avoid tearing the membrane or breaking the polyethylene pipe.
	It is important not to contaminate the membrane of the pipe with sludge, grease, oil or other substances which may alter the properties of the product.
	If the exterior membrane is dirty, wash it with a hose to return it to its' original condition.
Storage	The outer fabric of the Advanced Enviro-Septic [®] pipe is ultra-violet stabilized. However, the protection breaks down after a period of time in direct sunlight. To prevent damage to the fabric, cover the pipe with an opaque tarp.
	Store the pipe in an elevated and dry area to prevent surface water and soil from entering the pipes or contaminating the fabric prior to installation.


Section O – Sequential Installation Procedure

Sequential Procedure

Background	The following paragraphs provide the necessary steps for the installation of an Enviro-Septic [®] System. The installation sequence of the components may vary according to the constraints of the installation site. For example, the septic tank / pump station may be installed after the Enviro-Septic [®] System.
Authorized Installer Required	All Enviro-Septic [®] installations must be done by an installer authorized by Make-Way Environmental Technologies Inc. (Make-Way is authorized by DBO Expert Inc to train and accredit installers). Authorization is obtained by attending a training session or by doing the first installation under supervision of Make-Way Environmental Technologies Inc.
Steps to Follow	The installer must follow a series of steps in the construction of an Enviro-Septic [®] System:
	 Obtain the plans, specifications and necessary permit authorizations. Follow the plans and specifications as filed with the authorities. Excavate the contact area and scarify the surface of the receiving soil. If required, install the waterproof membrane and the collection zone, Install the sampling device. If required, install the imported sand on the Enviro-Septic Contact Area. Install the System Sand on the Enviro-Septic Contact Area. Install the Advanced Enviro-Septic[®] pipe rows. Place System Sand between rows Pack System Sand between rows by walking on top of the System Sand between the rows. Cover the Advanced Enviro-Septic[®] pipes with System Sand exposing the ends. Install the Distribution Box and the Equalizers[™] or other distribution device for distribution of the septic tank effluent. Install the feed, and ventilation piping. Cover the System Sand with clean top soil (no silt / clay) permeable to air.
	The installation of the septic tank should be done following the manufacturer's recommendations and OBC requirements. Depending on site conditions, the septic tank may be installed before or after the Enviro-Septic System is installed.
	Installation of a pump station or low pressure distribution system should be done according to this manual.

Planning the	
Installation	

Find the optimal order of steps for the installation:

- According to site constraints.
- Taking into account the movement of machinery.

The System Sand must meet the following specifications:

- Effective diameter (D_{10}) : 0.20 < D_{10} < 0.5 mm.
- Coefficient of uniformity (D_{60}/D_{10}) : Cu < 4.5
- Less than 3% silt; diameter $< 80 \ \mu m \ (0.080 \ mm)$
- Less than 20% particles with diameter > 2.5 mm.

Calculating the different elevations:

- 1% slope between:
 - the exit from the septic tank and the distribution box (gravity feed)
 - the distribution box and the entry to the furthest pipe
- Typical incline of 125 mm in the septic tank.⁷
- Typical incline of 50 mm in the distribution box⁴.
- Minimum separation between the interface of the System Sand / receiving soil and the high point of groundwater, rock or limiting soil.
- 1% incline in the ventilation pipes leading to the vent (sloping toward the Advanced Enviro-Septic[®] pipes)

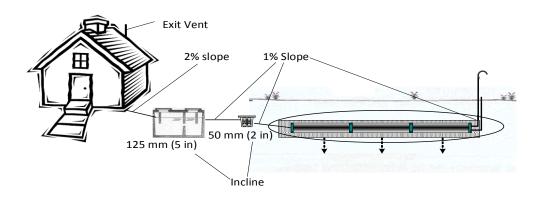


Figure 43

⁷ Septic tank and D-Box incline may vary depending on manufacturers.

Necessary Modifications to Plans and Estimates	When planning the installation, if the installer realizes that modifications must be made, he must communicate with the designer to discuss and obtain permission to make changes to the plan, filing or specifications. It is important that all the constraints analyzed by the designer be taken into account before making modifications.
Septic Tank	Install the septic tank in accordance with manufacturer's recommendations and OBC requirements. Minimum of two days retention in a 2-compartment septic tank. An OBC effluent filter is required.
Preparation of the Installation Site	 Outline the contact area / surface to be excavated. Excavate the layer of soil required according to whether the installation will be raised partially raised or in-ground. Scarify the surface of the receiving soil where the System Sand (or imported sand if required) will be spread out including the side walls. At the interface between sand and soil, the soil surface must not be smoothed or compacted. It must be scarified to allow for optimal percolation of the treater effluent from the sand in to the receiving soil. To the extent possible, conserve the existing conditions of the soil underneath. Avoid compaction of the soil as this will affect its permeability. Note : Avoid the imported sand (when required) and the System Sand the same day as the excavation. Avoid the accumulation of rain water or surface runoff in or on the system during the construction period. Do not do an installation in ground that is saturated with water or in the presence of frost.
Soil Compaction	Minimize machine movement to avoid soil compaction and destruction of the soil structure under and around the system. Be especially careful not to compact soil on the down slope side of the system. Only tracked equipment should be utilised, i.e. no rubber tired vehicle.

Sampling Device Installation

Introduction	 The sampling device is to be installed on the surface of the scallts installation is done in four steps: Install the base unit of the sample port and the drainage in Add System Sand over the drainage pipe Install the collector Add System Sand over the sampling device assembly 	pipe	
List of Materials / Components	See the Table below for a list of materials /components requinstallation of the sampling device.	ired to complete the	
<u>Table 6</u>	List of Materials / Components – Sampling Device		
	Items	Quantity	
	Sample port (base unit, access port, adapters and cover)		
	Sample port (base unit, access port, adapters and cover)	1	
	Collector	<u> </u>	
		1 1 ±5 m	
	Collector	$\frac{\pm 5 \text{ m}}{2}$	
	Collector Ø 100 mm drainage pipe with filter sock	±5 m	
	Collector Ø 100 mm drainage pipe with filter sock Ø 100 mm cap (male) for drainage pipe	<u>±5 m</u> 2 2	
	Collector Ø 100 mm drainage pipe with filter sock Ø 100 mm cap (male) for drainage pipe Ø 100 mm fitting to connect drainage and PVC pipe	$ \frac{\pm 5 \text{ m}}{2} $ Based on the	
	Collector Ø 100 mm drainage pipe with filter sock Ø 100 mm cap (male) for drainage pipe Ø 100 mm fitting to connect drainage and PVC pipe Ø 100 mm PVC pipe	<u>±5 m</u> 2 2	
	Collector Ø 100 mm drainage pipe with filter sock Ø 100 mm cap (male) for drainage pipe Ø 100 mm fitting to connect drainage and PVC pipe Ø 100 mm PVC pipe • to connect the drainage pipe to the sample port	$ \frac{\pm 5 \text{ m}}{2} $ Based on the	
	Collector Ø 100 mm drainage pipe with filter sock Ø 100 mm cap (male) for drainage pipe Ø 100 mm fitting to connect drainage and PVC pipe Ø 100 mm PVC pipe • to connect the drainage pipe to the sample port • to connect the collector pipe to the sample port	±5 m 2 2 Based on the distance Based on the port	

Step 1 – SampleOnce the receiving soil has been scarified, the Contractor installs the sampling
device:Port anddevice:Infiltration pipeInfiltration pipe

- Determine the position of the sample port and the infiltration pipe on the receiving soil.
- Calculate the length of the PVC return pipe and cut pieces to length.
- Add PVC elbows if required in the selected configuration.
- Cut a 3.6 to 4.5 m length of \emptyset 100 mm drainage pipe with sock filter for the infiltration pipe.
- Cap one end of the pipe to keep filter sock in place.

Figure 44

• At the other end of the pipe, install a coupling to hold the other end of the filter membrane.

Note: Certain types of adapters are inserted directly into 100 mm PVC pipe. Others require a fitting, as illustrated below.

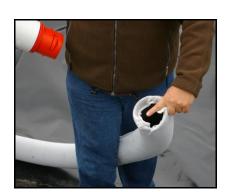


Figure 45

- Remove the access port section from the base unit of the sample port.
- Create a slight depression (125 mm to 140 mm) where the base unit and the return pipe are to be installed. Make sure the bottom of the base unit is level.
- Put the base unit in place.

• Remove the tear-out in the center of the Polylok® adapter of one of the two lower openings in the base unit, in accordance with the plan configuration, along the Ø 99 mm cutting line.

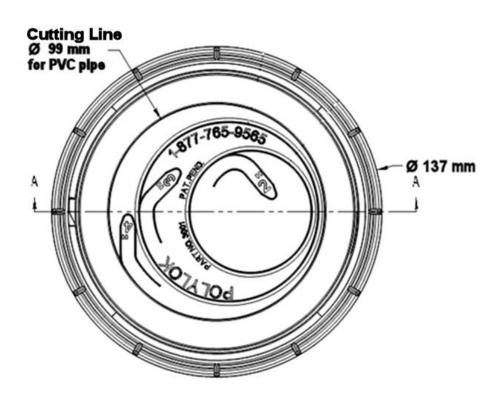
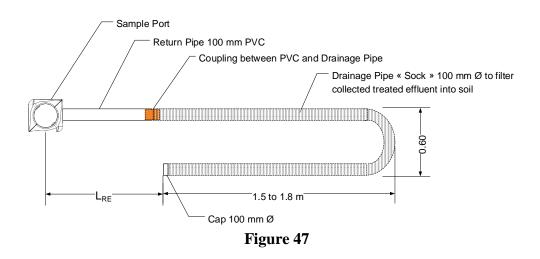
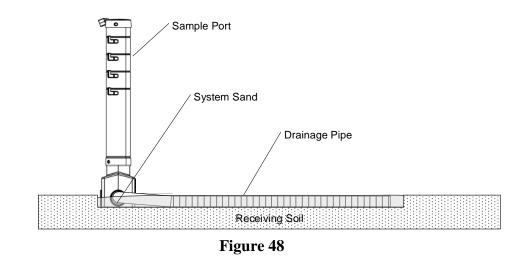
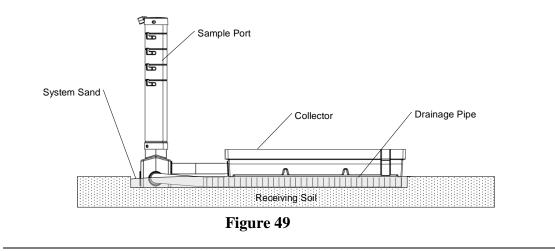




Figure 46

- Slide the return pipe into the Polylok® adapter, rotating it to ease the installation. Make sure the pipe is inserted into the base unit by approximately 25 mm.
- Complete the installation of the drainage pipe as shown in Figure 47.



Step 2 – Sand Fill Around the Return and Drainage Pipe • Add a 100 mm layer of System Sand around the base unit of the sample port, the return pipe and the drainage pipe. See Figure 48.

Step 3 – Installation of the Collector

- Cut a 1.65 m length of \emptyset 100 mm drainage pipe with filter sock for the collector pipe.
- Cap one end of the pipe to hold filter sock in place.
- At the other end of the pipe, install a coupling to hold the other end of the filter sock in place. Install a fitting onto the coupling if required.
- Cut a length of \emptyset 100 mm PVC pipe to connect the collector to the base unit of the access port.
- Add PVC elbows, if required in the configuration.
- Remove the tear-out in the center of the Polylok® adapter of the upper opening in the base unit along the \emptyset 99 mm cutting line.
- Slide the collector inlet pipe in the Polylok® adapter, rotating it to ease the installation. Make sure the pipe is inserted into the base unit by approximately 25 mm.
- Remove the tear-out in the center of the Polylok® adapter in the collector opening along the Ø 99 mm cutting line.
- Slide the other end of the inlet pipe in the collector opening.
- Connect the collector pipe to the inlet pipe inside the collector.
- Place the collector pipe at the bottom of the collector.
- Give a positive slope ($\approx 1\%$) to the collector in the direction of the sample port to facilitate the movement of the effluent in that direction.
- Complete the installation of the collector as shown in Figure 49.

Step 4 – Fill Material Around the Collector

- While holding the components in place, cover the base unit, the inlet pipe and the collector with System Sand that meets the established selection criteria.
- Add System Sand inside and outside the collector, ensuring that the collector retains its initial shape.
- Complete the installation of the sampling device as shown in Figure 50.

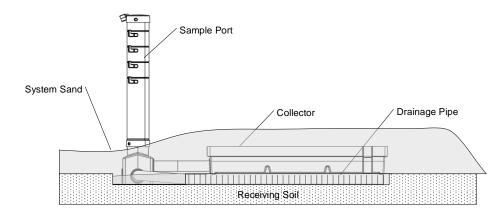
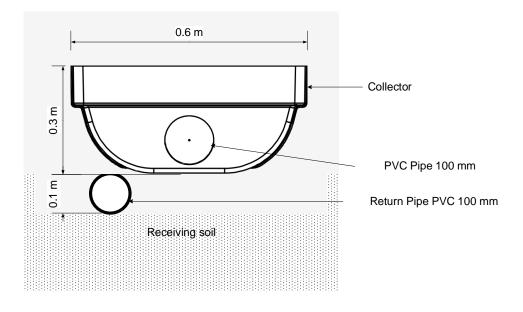
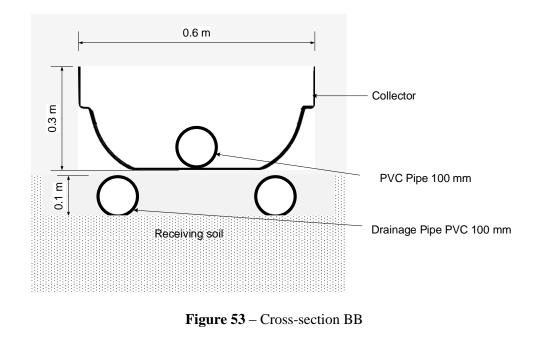


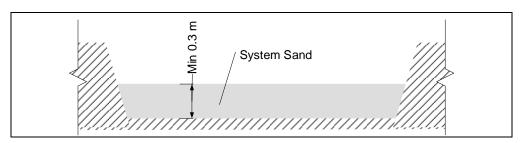
Figure 50

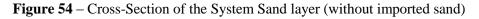
• See Figure 51 through Figure 53 for other views of the sampling device once installed.



Figure 51 – Position of cross-sections


Figure 52 – Cross-Section A-A



Sand Layer and Rows of Pipe

Preparing the Layer of System Sand under the	After having scarified the receiving soil and after having installed the sampling device (see previous paragraph):
Pipes	 Add a layer of imported sand over the Enviro-Septic Contact Area if required. Add a layer of 0.3 m of System Sand over the Enviro-Septic pipes. When the spacing between the Enviro-Septic length (E_{cc}) is up to 0.9 m, imported sand could be added between the Enviro-Septic length instead of using System Sand

(refer to appendix 2).
Level lengthwise the surface of sand which will receive the Advanced Enviro-Septic[®] pipes.

Installing the Advanced **Enviro-Septic**[®] Pipes

- Be sure that the surface of System Sand over the Enviro-Septic Contact Area corresponds with the dimensions prescribed in the plan and that it is level the full length in the direction of the pipes.
- Arrange the pipes on the surface keeping in mind the number of rows needed, the number of pipes per row and the center to center spacing (E_{CC}), lateral extension distance (E_L) and end extension distance (E_E) .
- The seam side of the geotextile fabric that covers the pipes must be upwards. The 250 mm wide white membrane (bio-Accelerator) must be situated at the bottom of the pipe.
- Assemble the Advanced Enviro-Septic[®] pipes using the couplings provided.
- Level the rows of Advanced Enviro-Septic[®] pipe from one end to the other.

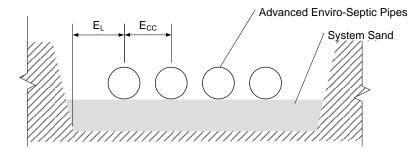


Figure 55 – Cross-Section of Advanced Enviro-Septic[®] pipes on the System Sand (without imported sand)

Couplings are used to join the Advanced Enviro-Septic[®] pipes and create rows. To put them in place the installer must:

Figure 56 – Coupling Installation

- Pull back the geotextile membrane at the ends of the two pipes to be connected.
- Place the two ends one or two centimetres apart making sure that the seam is on top of the pipes and that the two white membranes are at the bottom.
- Install the coupling on the two Advanced Enviro-Septic[®] pipes to be joined, being careful to insert the ridges of the couplings in the channels of the pipes.
- Close the upper part of the coupling by inserting the locking tab into the

Installing the Couplings

corresponding opening.

- Replace the geotextile membranes over the coupling.
- Keep seams upward.

Figure 57 – Replacing the membranes over the coupling

Installing the Offset Adapters Offset Adapters are used to connect the PVC pipe to the Advanced Enviro-Septic[®] pipes for both air and wastewater. An Offset Adapter must be installed at the end of each row. Offset Adaptors are available in single opening or double openings. Generally, a single offset adapter is used at the beginning of the row while the double offset adapter is installed at the opposite end where the piezometer and aeration pipes (connected to the vent) are located.

To put the offset adapters in place, the installer must:

- Pull back the geotextile membranes at the end of the pipe.
- Push the offset adapter in place so that the locking tabs located on the inside of the adapter locks into the corrugations of the Enviro-Septic pipe.
- In the case of the single offset adapter, the opening must be placed at the top position to facilitate the passage of air at all times.

Figure 58 – Installation of the Single Offset Adapter

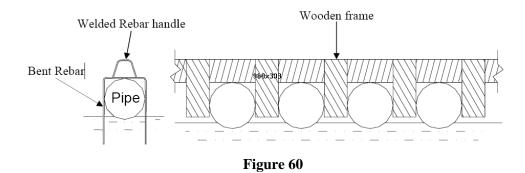
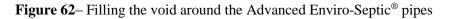

• As for the double adapter, the openings must be vertically aligned (top and bottom).

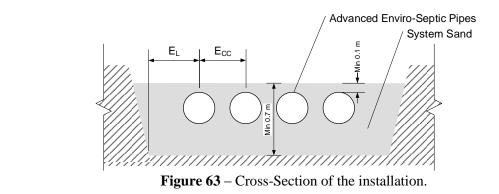
Figure 59 - Installation of the double offset adapter (old and new style)

• Replace the geotextile membranes over the adapter.

Row Spacers While sand may be used to keep the pipes in place while covering, simple tools may also be constructed for this purpose. Here are two examples. One is made from rebar, the other from wood.

Caution: Remove all tools used as row spacers before final covering.


Covering the Advanced Enviro-Septic[®] Pipes Once the pipes are connected and the adapters properly in place, the installer must spread System Sand on the pipes to keep them from moving.


Figure 61 – Covering the Advanced Enviro-Septic[®] pipes

- First, add System Sand over the couplings to stabilize the rows.
- Next, progressively add System Sand along the length of the pipes up to their mid height.
- Push down the System Sand by walking on both sides of the Advanced Enviro-Septic[®] pipes to fill gaps which may have been created under the pipes.

• Completely cover the pipes with System Sand and add an extra layer of a minimum of 100 mm on top of the pipes. If the spacing between the Enviro-Septic length (E_{cc}) is up to 0.9 m, an extra layer of a minimum of 100 mm of imported sand could be added on top of the pipe instead of using System Sand (refer to appendix 2).

Piezometers

For each double offset adapter (2 holes):

- Cut a 100 mm PVC pipe 45 cm long (18 inches).
- Install it horizontally and insert it 100 mm into the bottom opening of the double offset adapter.
- Connect this pipe to a piezometer or to a manifold which will be linked to a piezometer (when one piezometer is used for several rows all at the same level).

For each piezometer:

- Connect each piezometer to the horizontal pipe using a 90° short elbow or a "T" fitting, depending on whether the piezometer serves one or several rows of pipes.
- The piezometer is made of PVC pipe 100 mm in diameter. It needs to be as long as needed in order to be above the final fill or embankment (usually between 55 to 85 cm or 22 to 34 in).
- Add a green cap part of the Enviro-Septic kit on the extremity of each piezometer.

Figure 64 – Piezometer installation

Vent

- Insert a pipe with a 1% incline, 100 mm into the top hole of each double offset adapter.
- Connect the pipes together using the appropriate fittings.
- Install the vent on the aeration manifold (max 300 m of Advanced Enviro-Septic[®] pipe per vent)
- Allow sufficient height (min 1.2 m) to avoid the vent opening being covered with snow during winter.

Figure 65 – Aeration pipe and vent installation

- The PVC pipes must never be inserted more than 100mm (4 inches) into the Advanced Enviro-Septic[®] pipes.
- Be sure that the ventilation pipes have a 1% slope in the direction of the Advanced Enviro-Septic[®] pipes so that condensation can flow back to the system at all times.
- Make sure that there is a continuous air circulation between the entry vent located downstream of the Advanced Enviro-Septic[®] pipes and the exit vent of the residence's plumbing located on the roof.

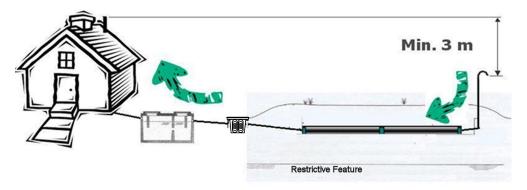
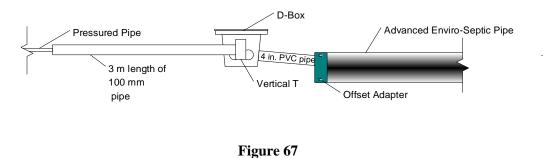


Figure 66 – Air Circulation

Native feed System:

• There must always be a height difference of 3 m between the two vents.

Pump Station Systems:


- First choice: install a bypass pipe connecting the pump station to the Enviro-Septic header manifold using a 100 mm PVC pipe. Make sure to construct the bypass pipe with a high point in such a manner that only air but not water can travel back to the pump station.
- Second choice: install a second vent located on the distribution box or on the Enviro-Septic header manifold. The 3 m difference between the entry and exit vents is still required.

Pumping Station (optional) If a pump station is required, it must be installed according to the manufacturer's recommendations. The installer must be careful to follow the designer's specifications when programming the pump cycles. The parameters to consider are:

- Minimum and Maximum volume per cycle.
- Maximum flow of the pump

Velocity Reducer

If a pump station is required to send the wastewater up to the D-Box, a velocity reducer must be used to slow down the flow and encourage an even distribution of wastewater through the equalizers. Install this device according to the plans, upstream from the D-Box.

D-Box Installation

The majority of residential Enviro-Septic[®] Systems use a D-Box as a method of distributing the wastewater between the rows of pipes. The steps to install the distribution box are as follow:

- Create a stable horizontal base of compacted sand.
- Place the distribution box level on the sand surface.
- Correctly place the distribution box keeping in mind that the entry hole is higher than the exit holes. Whenever possible, make sure that the cover will be accessible from the surface for inspection purposes. Use raiser if needed.
- Keep a 1% slope between the exit hole of the septic tank and the entry hole of the distribution box.
- Cut out the plastic of the openings of the distribution box to be used according to the number of distribution pipes to be installed:
 - Cut part of the diameter of the opening with a knife.
 - Gently pull out the remaining part of the circle.
 - Do not try to push in the rubber circle as it may damage the gasket.
 - Repeat these steps for each opening to be used.
- Insert the 100 mm PVC pipes into the distribution box :
 - Insert the pipe approximately 25 mm into the distribution box
 - Twist the pipe to insert it easily
 - Insert the inlet pipe a little further and add a vertical tee in the center position.

Installation and Balancing of Distribution Box Equalizers™ EqualizersTM are inserted into each of the 100 mm PVC pipes exiting the D-Box. They are used to improve the D-Box performance by equalizing the flow to each of the Enviro-Septic Pipes.

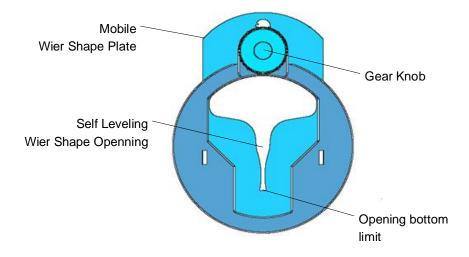


Figure 69 - Equalizer

The Equalizers[™] must be installed and adjusted as follows:

1. Insert one Equalizer unit into each D-Box outlet pipe with the adjustment knob positioned on top.

- 2. Rotate all adjustment knobs clockwise to the full UP position.
- 3. Add water into the D-Box until reaching the weir openings of the Equalizers. Using the water as a level, observe which outlet sits lowest in the D-Box and do not adjust the Equalizer fitted to that outlet. Rotate all remaining Equalizer knobs counter-clockwise, moving the weir plate DOWN to match the level of the lowest Equalizer and the water line. Fine tune by slowly adding water to make sure all weir opening outlets are at the same level.

CAUTION: If a D-Box is out of level more than 9.5 mm (3/8"), re-level the D-Box and start again.

Feed, Distribution and Aeration Pipes	Use 100 mm PVC watertight pipes.
	Place the bell opening of the pipes in the direction of the slope.

Insert the 100 mm PVC pipes into the Advanced Enviro-Septic[®] pipes. Use a minimum of 200 mm of pipe between the extremity of the Advanced Enviro-Septic[®] pipe and the elbow or T of the header manifold.

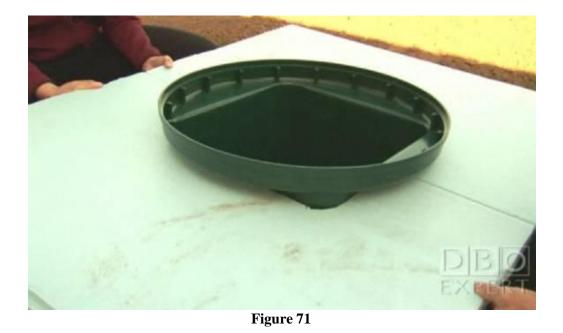


Figure 70 – Inlet Pipe sloped toward Advanced Enviro-Septic®

Keep a minimum of 1% slope between the distribution box and the opening of the single offset adapter.

If the slope is steep, make sure the water will be slowed down before entering the pipe to avoid too much movement at the beginning of the row.

Where frost is a concern, add insulation around the D-Box and over the feeding pipes as shown on the following figure.

Final Backfill and Grading	Cover the Advanced Enviro-Septic [®] pipes with a minimum of 300 mm (maximum 600 mm) of backfill permeable to air with no silt / clay.
	Of this 300 mm, the first 100 mm on top of the pipes must be System Sand.
	The top soil is to be permeable top soil according to the OBC requirements.
	When part of the system is above ground, put the lateral embankment at the required slope as indicated in the plan.
	Leave a slight slope on top of the bed. The final grade must permit rainwater to flow toward the exterior perimeter of the system.
Erosion Control	Protect the top of the bed by creating a slight slope to permit water runoff. Plant grassy vegetation to prevent erosion.

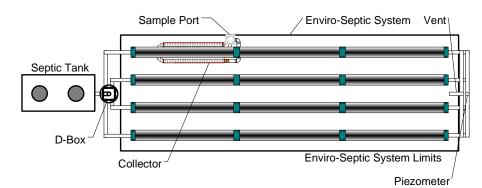
Completing the Installation

Starting the System	Be sure that all the installation steps have been followed to the satisfaction of the designer or engineer in accordance with the BMEC authorization, the OBC regulation and this installation manual.
	Fill the septic tank with fresh water.
	Visualize the aeration circuit to be sure that it is continuous between the entry vent located at the end of the Advanced Enviro-Septic [®] pipes and the exit vent (min 3 m higher) generally located on the roof of the residence or building.
	Where required, connect the electricity to the pump station in accordance with the requirements of the Electrical Safety Authority (ESA) and make sure it is running properly according to manufacturer's directions.
	The system is now ready to be used!
Leaving the Site	If the finished grade or landscaping is to be done by others, upon leaving the site, place a stake or several stakes as needed, that mark the finished grade. Also leave a note to explain that vehicular traffic is not allowed on the system.
Administrative File	Fill out the Enviro-Quality form, add the sieve analysis representative of the system sand used and send everything to Make-Way Environmental Technologies Inc. in the prepaid postage envelope.
	Give the Owner's Manual to the new Enviro-Septic [®] System owners or inform them that they will be receiving one directly from Make-Way Environmental Technologies Inc. upon receipt of the Enviro-Quality form.

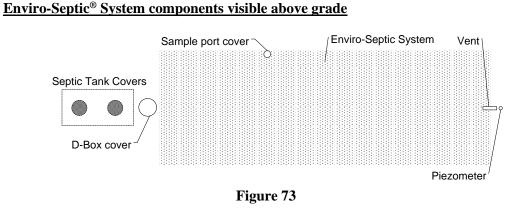
Use and Maintenance Guide

Section P – Daily Use

Background	The Enviro-Septic [®] System is a passive wastewater treatment attached growth technology. Properly installed, the Enviro-Septic piping requires no particular action taken for daily use, intermittent use or after a prolonged absence.
Usage Directions	As with any septic system, attention should be paid to the nature of the wastewater to be treated. It is important that the users of the system follow the direction presented in the Owner's Manual. It provides a detailed list of things to do or not to do in and around the residence or building being served by the system. Not following the directions may lead to clogging or premature aging of the system. If this happens, actions can be taken to regenerate the biomat or to replace certain components if damage warrants it.
What to Do in Case of Problems	If, in the course of normal use of your treatment system, you notice any of the following:
	 Presence of abnormal odour in the residence, around the septic system or emanating from sources of drinking water, Abnormally wet soil, presence of ponding or odours in the area of the septic tank or the Enviro-Septic[®] System, Back-up in the toilets or other sanitation devices in the home Presence of abnormally abundant vegetation on the surface or around the septic tank or the Enviro-Septic[®] installation Flooding of the land where the Enviro-Septic[®] System is installed Erosion of the soil on or around the Enviro-Septic[®] System Alarm from the pumping station, if such a device is part of your installation Immediately contact your contractor or customer service at Make-Way Environmental Technologies Inc. Please have available the information found on your warranty card.


Section Q – Component Maintenance Program

Background The Enviro-Septic[®] System requires only minimal maintenance. In fact, it is just a periodic follow-up. This follow-up could eventually lead to certain maintenance operations.


Note, however, that the septic tank, the pump station, and the distribution device will need further maintenance according to the BMEC authorization and directions of the manufacturer of these systems.

Locating the
SystemThe following diagrams will help determine where the system has been installed.
Refer to the original drawings for more details.

Enviro-Septic® System components installed below grade

Note: The positioning of the components may vary according to the configuration used. The broken lines represent the position of the septic tank, the D-Box and the Enviro-Septic[®] System. If a pump station is being used an additional cover will be visible above grade.

Septic Tank Maintenance	 The Septic tank as part of the Enviro-Septic[®] System must be pumped on a periodic basis. Generally, it must be inspected every 2 to 4 years to determine when to pump the contents, depending if it is used on a regular or occasional basis. When pumping the septic tank, the liquid and the solids are to be removed completely from both compartments of the tank. The septic tank is then filled with fresh water. At all times, the emptying of the septic tank must be done by a person with the proper training and pumping equipment. It is the Owner's responsibility to have the septic tank pumped. This work must always be done by a qualified person. It can be very dangerous to open a septic tank without first taking the necessary precautions.
	Note: The owner must always be sure that the septic tank covers are properly secured in place. A poorly installed cover is a safety hazard.
Septic Tank Effluent Filter	The Septic tank is equipped with an effluent filter. It must be maintained according to the inspection and maintenance procedure recommended by the manufacturer. Please note that the effluent filter used must not hinder the free passage of air travelling through the system. The top of the effluent filter needs to be open.
Distribution Boxes and Equalizers™	 Under normal use, the D-Box does not require adjustment. The initial adjustment and the auto levelling (natural adjustment) capacity of the equalizers together maintain a good distribution of wastewater in the rows of Advanced Enviro-Septic[®] pipes. The Enviro-Septic maintenance provider will make any required adjustments. If an adjustment is necessary the technician must do the following: Clear and remove the cover of the distribution box. Take the Equalizers[™] out of the outlet pipes and wash them under running water to remove any accumulation of grease or slime. Remove any sludge that has accumulated on the bottom or sides of the distribution box. Put the Equalizers[™] unit back into each D-Box outlet pipe with the adjustment knob positioned on top. Rotate all adjustment knobs clockwise to the full UP position. Add water into the D-Box until reaching the weir openings of the Equalizers. Using the water as a level, observe which outlet sits lowest in the D-Box and do not adjust the Equalizer fitted to that outlet. Rotate all remaining Equalizer knobs counter-clockwise, moving the weir plate DOWN to match
	• Add water into the D-Box until reaching the weir openings of the Equalizers. Using the water as a level, observe which outlet sits lowest in the D-Box and do not adjust the Equalizer fitted to that outlet. Rotate all remaining

CAUTION: If the D-Box is out of level more than 9.5 mm (3/8"), re-level the box

and start again.

	 Put the inside insulation (plastic D-Box) and the cover back on the D-Box being careful that it sits properly on all sides. Replace insulation or soil originally found on top or around the D-Box Make sure to return the site in its original condition.
Rows of	Under normal use, the rows of Advanced Enviro-Septic [®] pipes need no maintenance.
Advanced Enviro-Septic® Pipes	It is normal to find a certain fluctuation of the water level in the pipes. However, if the water level is equal or higher than 260 mm, an Enviro-Septic [®] System rejuvenation may be needed. This procedure must be done by an authorized maintenance person (see Section U – System Rejuvenation and Expansion).
Sampling Device Maintenance	The Enviro-Septic [®] System has a sampling device. A 200 mm diameter sample port with access just above grade will be located on one side of the system, near the extremity of the rows fed by wastewater coming from the septic tank. (see Figures 39).
	The sampling device does not need maintenance. It is only necessary to make sure that the cover stays in place.
	For more information on the use of the sampling device, consult the Section R on the sampling procedure.
Piezometers	Other than making sure that the covers are in place, there is no maintenance to do on the piezometers.
Vent	The vent requires no maintenance. The owner must make sure that nothing hampers the air circulation. In the winter, the vent must be high enough so that the passage of air is not blocked by the snow. At all times, there must be a 3 m difference in height between the entry vent at the end of the Enviro-Septic [®] System and the vent stack generally located on the roof of the building.
System Sand	With the Enviro-Septic [®] System, there is no maintenance necessary for the sand.

Pumping Station or Low Pressure Distribution System	In some cases, the constraints of the site or the wastewater distribution needs require the use of a pump station or a low pressure distribution system. The Owner is then responsible for respecting the manufacturer's directions for maintenance of this equipment.
	A flow measuring device is an option on pumped systems.
Surface of the Fill on top of the Enviro-Septic® System	The surface of the fill on top of the Enviro-Septic [®] System must be covered with grass. The finished grade must be slightly sloped so that rain water will run off the system. The grass must also be cut regularly. Any depressions / ground settlement that are produced with time should be with top soil filled to avoid water accumulation or erosion on top of the system.
Maintenance Summary Table	The following table shows a summary of the follow up to be done for each of the Enviro-Septic [®] System components. Maintenance is to be conducted by an authorized person as defined in the regulation and authorized by Make-way Environmental Technologies Inc. as a maintenance provider for Enviro-Septic [®] Systems.

<u>Table 7</u> – Summary of Maintenance for Enviro-Septic [®] System Components				
Component	Function	Steps to follow	Frequency	Responsibility
Septic Tank	Primary sewage treatment	Periodic emptying	3-5 years depending on use	Owner (the work must be done by a qualified person)
Effluent filter	Retention of solids too large for the maximum opening of the filter.	Accord	ing to manufacturer's d	irection.
Distribution system				
 A) Distribution box and Equalizers[™] 	Distribute the water from the septic tank to the rows of Advanced Enviro-	A) according to the level of water in the piezometers.	A) as needed	A) owner
B) Low pressure distribution system	Septic [®] pipes. B) according to manufacturer's directions		directions	
Rows of Advanced Enviro-Septic [®] pipes	Distribute and treat wastewater	See piezometers		
Piezometers	Indicate the water level in the pipes	Measures water level	Once or twice a year and as a preventative, before emptying the septic tank.	Qualified personnel
Sampling device	Verify the treatment performance of the Enviro- Septic [®] System	See sampling procedure section	Prior to each sampling	Qualified personnel
Sampling	Verify the treatment performance of the Enviro- Septic [®] System	See sampling procedure section	According to BMEC Authorization	Qualified personnel
Vent	Allows air passage through the Enviro-Septic [®] System	Verify that the opening is not obstructed	During annual inspection	Qualified personnel
System sand	Completes the treatment of the water and encourages its infiltration.	N/A	N/A	N/A
Pump station (if provided)	Lifts the wastewater up to the Enviro-Septic [®] System	According to specific system designer	ations and maintenance	e plan issued by

Section R – Method of Collecting and Evaluating Samples

Background	The Enviro-Septic [®] System has a sampling device which can be used to recover the treated water in order to analyze it. The following paragraphs describe how to sample the water in the system.
Materials	Here is a list of necessary materials for taking a sample of the Enviro-Septic [®] System effluent via the sampling device access tube:
	 Flashlight Cooler and sampling containers as provided by an accredited laboratory. Sampling container attached to a rod to lower the container to collect the sample.
Sampling Procedure	 Remove the cover from the sample port of the sampling device. Using the rod, lower the container below the inlet pipe at the bottom of the sample port. When treated water has accumulated in the container, retrieve it and filter the treated water into the laboratory containers using a 0.25 mm sieve to remove the large particles of sediment which could have fallen off the walls of the sampling device.⁸ Put the container on ice and repeat Steps 2 and 3 until enough treated water has been collected to fill all the laboratory containers. Place the analysis containers in the cooler to keep them cool. Pour the unused liquid in the sample port. Replace the covers and put a plastic tag on it. Be sure to leave the area in its initial condition. Indentify properly the laboratory containers and take note in the book of the date and time of the sampling. Quickly take the samples to the laboratory as specified by their measurement protocol.

⁸ The sieve is used to obtain a representative result. It is actually less constraining than the sand that the treated water would have traveled through to get to the surface of the receiving soil had it not been intercepted by the collector of the sampling device.

Visual and Olfactory Techniques to Evaluate the	If the Enviro-Septic [®] System is functioning properly, the effluent taken from the sampler should be clear or slightly coloured (yellowish, brownish). Also, it should be relatively translucent. If it has any smell, it should not be strong.
Effluent	<u>Visual evaluation</u> : Place the sample taken in a container with clear sides. Place the container on a white surface such as a sheet of paper. If the effluent has a dark color or is cloudy, it is a sign that the system might not be functioning normally.
	<u>Olfactory evaluation</u> : Holding the open container in your hand, on a horizontal plane, make a slight circular movement making the water swirl inside the container. If a smell of ammonia (sharp bitter smell), of hydrogen sulphur (rotten egg smell) or any other strong smell is noticeable, it is a sign that the system may not be functioning

normally.

If any of the potential problem signs are present, proceed to undertake a CBOD₅, a total suspended solid (TSS) and an E.-Coli. analysis.

Troubleshooting and Repair Guide

Section S - Component Inspection Procedure

Background	Even though the Enviro-Septic [®] System does not require any formal maintenance, an annual inspection is mandatory under the BMEC authorization, and it is good practice to ensure the system is functioning properly. The following paragraphs show which components are to be verified.	
Documentation	It is important to keep track of the inspections and maintenance provided. This is why a good follow-up involves compiling data about the state of the system at the time of inspection. Appendix 1 shows a form which can be used for this purpose.	
Installation Diagram	 It is important this diagram is prepared as part of the design permit requirements of the position of the equipment underground. This diagram should show the following elements as well as any other elements that could assist in the location and identification of the system components: Tank, sample port and D-Box covers; Pumping station cover (if present); Direction of the Advanced Enviro-Septic[®] pipes; Location and numbering of the piezometer openings; Vent. 	
	Here is an example of an Enviro-Septic [®] System diagram.	

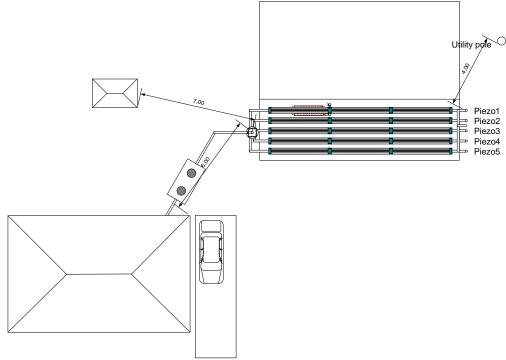
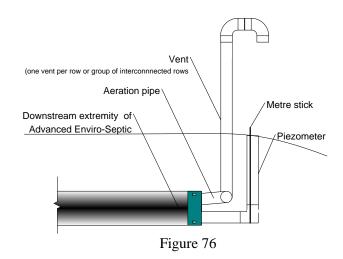



Figure 75

Necessary Precautions	The septic tank and the pipes and contains wastewater. Resurgent water may also be contaminated, so certain precautions must be taken. The person doing the inspection of a septic installation must be properly protected. Work clothing, glasses and protective gloves are to be worn. The use of disposable gloves is recommended. In order to avoid possible contamination, avoid direct contact with wastewater.
Septic Tank	The Septic tank precedes the treatment system. It must be pumped periodically (Every 3 - 5 years. A record of emptying must be kept by the owner.
	 At the time of inspection; Verify that the covers of the septic tanks are in place, secure and in good condition. Verify that surface water run-off cannot enter the septic tank by the cover or any infiltration point. Verify that the soil above and around the septic tank is stable and not spongy which could indicate the presence of a leak.
Visual Inspection	 At the time of inspection of the treatment system: Verify that the ground is stable above and around the treatment system and that it is grass covered. Verify that the lateral embankment has an acceptable slope (maximun 4 horizontal to 1 vertical) to avoid eventual erosion problems. Determine if there are any forewarnings of a problematic situation such as spongy or soaked ground, presence of unwanted plants, presence of resurgence or soil erosion.
	It is suggested to take pictures of the state of the installation at the time of inspection and keep them on file.
Measuring the Water in the Piezometers of the Advanced Enviro-Septic® Pipes	 The measurement of the water level in the rows of pipes is done via the piezometers found at the end of the Enviro-Septic[®] System. <u>Sequence in which to measure the water level</u> 1- Remove the cover of the piezometer to be measured. 2- Slide a wooden stick or a meter stick into the piezometer so that its end is in the water that might be present at the bottom of the piezometer. Normally a wooden stick one meter long is sufficient. If however your piezometers are deeper, use a longer stick. A piece of string attached to your measuring stick may also be used to lower and raise the stick from the piezometers. 3- Using a ruler (or directly on the meter stick), determine the water level in the pipe by the level of wet surface on the stick. When having difficulty reading it, put fine sand on the stick before putting it into the piezometer. The sand will be mostly gone from the area submerge in water and the reading will be easier. 4- Take note of the water level in the piezometer.

- 5- Replace the piezometer cover.
- 6- Wipe the wet area of the stick (or ruler) with a disposable cloth.
- 7- Repeat these steps for each piezometer.
- 8- Clean the stick or ruler and the gloves if reusable. Discard disposable gloves and cloths in a closed plastic bag.
- 9- Record the results obtained in the piezometers section of the follow-up form (see Appendix B).

Other option: Instead of using a stick or meter stick, the reading can be taken using a plunging siphon. A plunging siphon is a small graduated tube used to remove a small quantity of liquid. The technician inserts the plunging siphon to the bottom of the piezometer, closes the top opening with his thumb, then removes the siphon from the piezometer to see the reading.

Adjustment of the Distribution Box Equalizers	If the measurement of water level in the piezometers shows a variation of more than 100 mm between the lowest and the highest piezometers at two consecutive measuring, the Equalizers TM in the D-Box must be adjusted. Proceed to do the adjustment following the directions given in Section O.
Measuring the Water level in the Other Piezometers	Local regulations may require the installation of one or more piezometers to measure the level of the groundwater. These piezometers can be installed in the center of the treatment system or in the area surrounding it.
	If these piezometers exist, take the reading of the water level in them and record the results on the follow-up form.

Section T - Replacement or Repair of Components

Sign of a System not Functioning Normally	If the Enviro-Septic [®] System presents any of the following conditions, it is not functioning as required:
	 Abnormally wet soil, presence of ponding or odours in the area of the septic tank or the Enviro-Septic[®] System Back-up in the toilets or other sanitation devices in the home Presence of abnormally abundant vegetation on the surface or around the septic tank or the Enviro-Septic[®] installation Flooding of the soil where the Enviro-Septic[®] System is installed Erosion of the soil on or around the Enviro-Septic[®] System Advanced Enviro-Septic[®] pipes filled with water Alarm from the pumping station if such a device is part of your installation
Possible Causes	Several elements may be the cause of a system malfunction. They can be grouped into three major categories.
	 Hydraulic Overloading (leaking fixture in the house, infiltration water in tank, D-Box or wastewater fed pipes, possible over use of water) Organic Overloading Inadequate air circulation
	 Inadequate maintenance of septic tank/ effluent filter Pollutant concentration higher than domestic wastewater
	Each of these categories will be analyzed in detail in the paragraphs to follow.
Hydraulic Overloading	<u>Possible Causes of Over Loading</u> There is too large a volume of wastewater discharging into the system.
	The System Sand does not meet the specifications and the water movement through the sand is restricted.
	Table 8 shows the most foreseeable causes and their solutions.

Table 8	Hydraulic Over Loading

Problem	Possible Causes	Solutions
Volume of water use from the building is greater than the design flow	• The use of water in the building is not as expected. The number of occupants is greater than planned. The activities in the building are generating a larger wastewater volume than normal or than was expected.	 Take readings on the water meter to measure the water flow used in the building in order to show the client that his activities are generating too large a volume of wastewater for the system. Ask the Owner to modify the activities or habits of the occupants so as to respect the system's capacity. Increase the capacity of the installation.
	• The plumbing in the building is in poor condition and leaks are causing an increase in the normal flow.	• Repair the plumbing in order to avoid unwanted water entering the treatment system.
	 Unwanted water is seeping in to the system. To verify this condition, cut all known sources of water use in the residence and see if water continues to run into the septic tank. Here are a few examples of possible causes: the exit of the building's drain pipes is connected to the treatment system. the pipe for the swimming pool backwash is connected to the treatment system. water runoff is getting into the septic tank via the cover or an unsealed joint. The water from gutters or sump pump is being directed to the septic tank. 	 Eliminate the unwanted water from the volume of wastewater to be treated. Direct water from the downspouts to the ditch or rain gutter. Direct water from the swimming pool to the ditch or have pumped by a hauler. Raise the cover or seal the joints so that groundwater cannot enter the septic tank. Direct this water to the drain pipe, ditch or away from the septic tank.
Unwanted water entering directly into the treatment system	 The treatment system is made up of sand and Advanced Enviro-Septic® pipes. In certain conditions, it may be receiving water not coming from the septic tank. This water increases the hydraulic load imposed on the surface of the receiving soil. The infiltration capacity is overextended and water accumulates. Here are some examples of possible causes: The system is not covered with top soil and grass. 	 Modifications must be made to redirect this water to the normal drainage ditches /swales . A drainage trench is a possible solution. Complete the covering making a slight slope towards the exterior of the system and cover with grass.
	 There is a depression in the surface on top of the system where water accumulates and then infiltrates. The system is on a slope and streaming water or groundwater is infiltrating into it. 	 Fill the depression with dirt, leaving a slight slope toward the exterior of the system and cover with grass. Provide a drainage trench/swale to intercept this water and direct it to a ditch.

Table 9	Hydraulic Over Loading
(continued)	

Problem	Possible Causes	Solutions
Rise in the groundwater table	• The addition of treated water to the receiving soil causes an increase in the level of the groundwater table the size of which depends on the site. In certain conditions this increase in level may come up to the treatment system.	diminish the hydraulic load of the receiving soil and thus reduce the increase in the groundwater table.

Deficient air circuit The aeration / vent piping is important to the proper functioning of the Enviro-Septic[®] System, as it permits the passage of air necessary to feed the bacteria responsible for the treatment of wastewater. If the air is cut off, the bacteria develop anaerobically creating a danger of clogging. Therefore, it is important to re-establish the vent flow if it is cut.

Table 10 shows the most foreseeable causes and their solutions.

Table 10	Deficient Aeration Circuit

Problem	Possible Causes	Solutions
The air is cut off	• There is no entry vent.	• All systems must have at least one entry vent per 300 m of pipes.
	• There is no exit vent or there is not 3 m of height difference between the entry and exit vents.	• All systems must have an exit vent. At best, it should be placed on the roof of the building and there must be a height difference between it and the entry vent of at least 3 m.
	 There is a pumping station but no diversion pipe for air passage. The slope of the aeration pipe is not toward the Enviro-Septic[®] System, so condensation accumulates and cuts off the air passage. 	 A diversion pipe or high vent must be installed to ensure air passage. The pipe must be adjusted correctly. This implicates having a 1% slope toward the Advanced Enviro-Septic[®] pipes or a drainage point for the condensation.
	• A vent is obstructed (i.e., by snow).	• Vents must be kept clear to permit air passage.

High strength
WastewaterThe Enviro-Septic® System is designed to treat water of a domestic nature. If the
wastewater entering the system is not what was foreseen, the bacterial development
may be affected, thus decreasing the level of treatment or even increasing the danger
of clogging.

Table 11 shows the most foreseeable causes and their solutions.

Problem	Possible causes	Solutions
The water is too saturated	• The septic tank contains a lot of grease or sludge. It hasn't been emptied recently so the usable volume is reduced and a lot of sediment is passing into the treatment system.	• Have the septic tank emptied and explain to the Owner the importance of doing this regularly.
	• The activities of the occupants are not as expected (i.e. restaurant, food production, etc.)	• Speak to the Owner about this to discuss a change in activities or an upgrading of the treatment system.
	• The septic tank is very clean, but the Owner puts additives in his water so a lot of solid ends up in the treatment system.	• Explain to the Owner why he should stop using these additives.
	 There are a lot of non-assimilated elements in the septic tank. A garbage disposal unit is used in the building. 	 Determine and eliminate the source of the non-assimilated elements. Ask the Owner to remove this equipment as it is damaging to the installation.
The water is loaded with chemicals	 Paint or other chemical products have been discharged into the treatment system. The occupants use large quantities of 	 Explain to the Owner the importance of not putting these products in his wastewater. Recommend that the occupants use
	caustic cleansers.	reduced phosphate cleansers and smaller quantities

Pumping Station For any problems related to the pump station refer to the manufacturer's instructions.

Replacement of One of the System	Minimal precautions must be taken if one of the system components needs to be replaced.
Components	 Stop the generation of wastewater. Remove and properly dispose of the contaminated liquid. Remove the piece of equipment and replace it with an equivalent piece of equipment. If it is a section of Advanced Environ Section® nine that needs

- equipment. If it is a section of Advanced Enviro-Septic[®] pipe that needs replacing, make sure to replace the sand properly around it. If the sand is contaminated, dispose of it properly and replace it with new sand.
- Verify that the connections are watertight when required and that the necessary slopes are present.
- Re-cover using the required layers of materials and cover with grass.

For replacement of the pump station, verify with the manufacturer's directions.

Section U – Rejuvenation Process and Expansion

Introduction	This section covers procedures for rejuvenating failing systems and explains how to expand existing systems.	
Definition: Failing System	System failures, almost without exception, are related to the conversion of bacteria from an aerobic to an anaerobic state. Flooding, improper venting, alteration or improper depth of soil, sudden use changes, introduction of chemicals or medicines, and a variety of other conditions can contribute to this condition.	
	It is normal to find a certain level of wastewater in the rows of Advanced Enviro-Septic [®] pipes. It is also normal to notice a fluctuation in the water level with time. But, when the system has been misused, a large level of clogging may occur around the pipes.	
	An elevated level of wastewater for a long period may be a sign of clogging. Fortunately, the Enviro-Septic [®] System has the ability to regenerate itself. In other words, it is possible to recreate practically the original conditions of the system.	
When Should we Consider Rejuvenation	A rejuvenation process can be expected if the wastewater level in the piezometers is above 260 mm (10.5 inches), and the sand around the pipes is not saturated with water. If the sand is saturated with water, you must first re-establish hydraulic balance in the system. After that, once the effluent is drained from the sand, a rejuvenation process should be done if the water level does not go down in the rows of pipes.	
Three Types of Rejuvenation	 There are three rejuvenation processes possible. The natural rejuvenation happens through reduction in use of the septic installation for a period of a few days or weeks (i.e. Period of absence for vacation). No intervention is required for this type of rejuvenation. The forced rejuvenation consists of emptying the septic tank and removing the water from the rows of Advanced Enviro-Septic[®] pipes at the same time. This form of rejuvenation is the most common and the easiest to do. The forced rejuvenation and cleaning consists of emptying the septic tank and the removal of water and any inorganic materials which have accumulated in the pipes over a number of years. This type of rejuvenation requires a more important intervention. It is required in the case where the system has been subjected to abuse or after many years of use. 	

Precautions to be	The forced rejuvenation process must be done by a qualified person.								
Taken	Exceptionally, when doing a forced rejuvenation, the septic tank is not filled with clear water as in the case of a normal emptying. This process must be done at a time when the level of the groundwater table is low and there is no danger that a hydrostatic pressure force on the septic tank.								
	The fact of not filling the septic tank gives the system 2 or 3 days rest even though the occupants of the building are continuing their normal activities. Evidently, the tank can be filled with clear water if the rejuvenation process is done just before the occupants of the building leave for a prolonged period of absence.								
	Preventive measure when emptying the septic tank It is recommended to verify the water level in the piezometers a few days before normal emptying of the septic tank (see measuring water levels). If the water level is too high, it is possible to use the emptying of the septic tank to do a forced rejuvenation process.								
Rejuvenating Failing Systems	Failing systems need to be returned from an anaerobic to an aerobic state. Most systems can be put back on line and not require costly removal and replacement by using the following procedure.								
	 Determine the problem causing system failure and repair. Drain the system through the piezometers installed at the extremities of the rows of Advanced Enviro-Septic[®] pipes or sections of rows of pipes. If the pipes need to be cleaned, pass a cleaning nozzle while pumping out the water and any dislodged debris. Under certain circumstances, this operation may require excavation at the ends of the rows of pipes. The ventilation pipes, piezometers and the offset adapters are then taken out for better access to the pipes and thus a more efficient cleaning. If foreign matter has entered the system, flush the pipes. Safeguard the open excavation. Guarantee a passage of air through the system. Allow all rows of pipes to dry for a minimum of 72 hours. Re-assemble the system to its original design configuration. 								
System Expansion	Enviro-Septic [®] Systems are easily expanded by adding equal lengths of pipe to each row of the original design or by adding additional equal sections.								
	<u>Note</u> : All system expansions need to be permitted by the local building department or considering authority regulation.								
Re-usable Pipe	Enviro-Septic [®] components are not biodegradable and may be reused. In cases of improper installation, it may be possible to excavate, clean, and reinstall all system components.								

Closing Words

The information in this manual is subject to change without notice. Your suggestions and comments are welcome. Please contact us at:

Make-Way Environmental Technologies Inc., P. O. Box 1869 Exeter, ON. NOM 1S7 Phone: 866-625-3929 Fax: 519-235-0570 Website: <u>www.makeway.ca</u> Email: <u>itech@makeway.ca</u>

or

DBO Expert Inc. 501, Chemin Giroux, , Sherbrooke, Québec, J1C 0J8 Phone: 1 866-440-4975, Fax. 819-846-3642 Website: <u>www.enviro-septic.com</u>

Enviro-Septic[®] is a registered trademark of Presby Environmental Inc. Advanced Enviro-Septic[™] is a trademark of Presby Environmental Inc. [©] 2007 DBO Expert, Inc. All rights reserved

- Enviro-Septic[®] U.S. Patent No's. 6,461,078; 5,954,451; 6,290,429; 6,899,359; 6,792,977, 5, 606, 78, and 7,270,532 with other patents pending.
- Canadian Patent Nos. 2,228,995, 2,185,087, 2,187,126 and 2,300,535 with other patents pending.

Appendix 1 - System Follow Up Form

Coordinates:			First name:
	City:	P	ostal Code
Photo Taken :			
Technician on	Site :		
Pipes:	:	 Traces of wastewater level flu Feed pipe slope problem 	actuation in the pipes
Veget	ation:	System not covered with grass Presence of unwanted plants /	s. / trees nearby
Odou	r: 🗌 At t	he entry vent At	the exit vent
Vent:		No roof vent3 m differential not respected	
Fill:		Nonconforming slope. Too st	eep
Back-	up	Visible Back-up	
Samp	ling	Cleaning of sampling device	Sample taken
Distri	bution	Adjustment of equalizers	
Flow	meter or water me	ter:	units:
		meters at the end of the rows of En	

Follow up Report – Enviro-Septic[®] System

No 1 No 2 No 3 No 4 No 5 No 6 No 7 No 8 No 9 No 10 No 11 No 12 No 13 No 14 No 150 No 16 No 17 No 19 No 20 No 18

The technician must indicate on the diagram the position of the piezometers measured and the numbering used.

Water level in the other piezometers. For each piezometer:

No. _____

Bottom measurement of piezometer_____ Top measurement of piezometer_____

Installation diagram (1 square = 1 m):

Other notes:

Appendix 2 – Examples of In-Ground Enviro-Septic Systems

Context

This section will show examples of how to design an in-ground Enviro-Septic[®] System using the steps described in this manual.

In Ground System – Scenario 1: Q = 2000 L/day, T = 5 min/cm

Design Scenario	 Daily sewage flow = 2000 litres Percolation time of the native soil; T = 5 min/cm (T ≤ 6 min/cm) Minimum Vertical Separation 0.60 m Distance between original grade and high-water table, bedrock or clay is 1.5 m or greater. The system can be designed as an in-ground system as the percolation time of the native soil is ≤ 50 min/cm and the clearances to the bedrock, high water table and clay, set out in Table 4 in Section D of the manual, are met.							
Septic Tank Design	All wastewater will enter into a septic tank sized in accordance with Clause 8.2.2.3 of the Ontario Building Code. Specifically, the septic tank shall have a minimum of 2 days retention time for residential wastewater and 3 days retention time for non-residential sewage flows. The septic tank shall also have two compartments as required by the Code and be equipped with an OBC effluent filter. At no time shall the tank be less than 3600 L working capacity as stated in Clause 8.2.2.3. For Q = 2000 L/day, the septic-tank size will be: • Residential wastewater, $V_{septic tank} = 2 \times Q = 4000$ L minimum. • Non-residential wastewater, $V_{septic tank} = 3 \times Q = 6000$ L minimum.							
Number of Advanced Enviro-Septic® Pipe	We require a minimum of one Enviro-Septic [®] pipe (3.05 m long) for each 126 L/day of septic tank effluent. For Q = 2000 L/day, from Equation (1): $N_{AES} = Q / 126$ $N_{AES} = 2000 / 126 = 15.9$ $N_{AES} = 16$ pipes minimum							
	Total Length = 16×3.05 m = 48.8 m of Enviro-Septic [®] pipe							
Minimum Enviro-Septic® Contact Area	The minimum Contact Area will be determined from the larger of the two possibilities. From Equation (2) we calculate the minimum surface/ base cut required for infiltration: For Q = 2000 l/day, $S_E = QT / 400$ $S_E = (2000 \times 5) / 400$ $S_E = 25 m^2$							

From Equation (3) we calculate the minimum Contact Area / surface for Enviro-Septic[®] spacing requirements. From Table 3.2, the minimum center to center pipe spacing is 0.45 m. With regards to E_L and E_E , (see Figure 6) the minimum distances are 0.45 m and 0.3 m respectively.

Following the requirements of the Ontario Building Code no row length is to be greater than 30 m long. Assuming we will use a configuration of 4 rows of 4 pipes, we obtain:

$$\begin{split} S_{SR} &= [L_R + (2 \times E_E)] \times [(E_{cc} \times (N_r - 1)) + (2 \times E_L)] \\ S_{SR} &= [12.2 + (2 \times 0.3)] \times [(0.45 \times (4 - 1)) + (2 \times 0.45)] \\ S_{SR} &= 12.8 \times (1.35 + 0.9) = 28.8 \ m^2 \end{split}$$

Since $S_{SR} > S_E$, we will use 28.8 m² as minimum surface required for the contact area.

Note: The choice of the pipe and row configuration is made taking into consideration the site constraints. Note that the minimum surface / contact area required for spacing requirements will differ slightly from one configuration to another.

System Layout Now we have all dimensions.

$$\begin{split} E_{CC} &= 0.45 \text{ m} \\ E_{E} &= 0.30 \text{ m} \\ E_{L} &= 0.45 \text{ m} \\ L_{R} &= 12.2 \text{ m} \end{split}$$

 $\begin{array}{l} \mbox{Length of System} = [L_R + (2 \times E_E)] = 12.8 \ m \\ \mbox{Width of System} = [(E_{cc} \times (N_r - 1)) + (2 \times E_L)] = 2.25 \ m \\ \mbox{Enviro-Septic}^{\circledast} \ \mbox{contact area} = 28.8 \ m^2 \\ \end{array}$

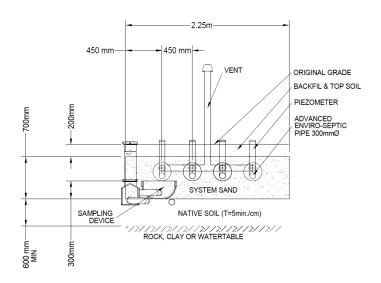


Figure 77– Cross-section of the system configuration

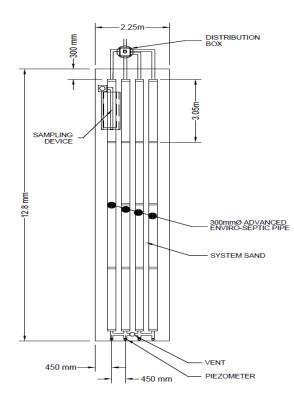


Figure 78 - Top view of the system configuration

In Ground System – Scenario 2: Q = 2000 L/day, T = 20 min/cm

Design Scenario	 Daily design sewage flow = 2000 L/day Percolation time of the native soil; T = 20 min/cm (6 < T ≤ 50 min/cm) Minimum Vertical Separation 0.45 m Distance between original grade and high-water table, bedrock or clay is 1.35 m or greater. 							
	The system can be designed as an in-ground system because the percolation time of the native soil is \leq 50 min/cm and the clearances to the bedrock, high water table and clay set out in Table 4 in section D of the manual are met.							
Septic-Tank Design	 For Q = 2000 L/day, the septic-tank size will be: Residential wastewater, V_{septic tank} = 2 × Q = 4000 L minimum. Non-residential wastewater, V_{septic tank} = 3 × Q = 6000 L minimum. 							
Number of Enviro-Septic®	We need a minimum of one Advanced Enviro-Septic® pipe (3.05 m long) for each 126 L/day							

Pipes	of septic tank effluent.								
	For Q = 2000 L/day, from Equation (1): $N_{ESP} = Q / 126$ $N_{ESP} = 2000 / 126 = 15.9$ $N_{ESP} = 16 \text{ pipes minimum}$								
	Total Length = 16×3.05 m = 48.8 m of Advanced Enviro-Septic [®] pipe								
Minimum Enviro-Septic® Contact Area	The minimum Contact Area will be determined from the larger of the two possibilities. From equation (2) we calculate the minimum surface required for infiltration: For Q = 2000 l/d, $S_E = QT / 400$ $S_E = (2000 \times 20) / 400$ $S_E = 100 m^2$								
	From Equation (3) we calculate the minimum surface / base cut area for Enviro-Septic [®] spacing requirements. From the previous example we already know that, using $E_{CC} = 0.45$ m, $E_L = 0.45$ m and $E_E = 0.3$ m respectively and assuming a configuration of 4 rows of 4 pipes, we obtain: $S_{SR} = 12.8 \times (1.35 + 0.9) = 28.8 \text{ m}^2$ Since $S_{SR} < S_E$, we will use 100 m ² as the minimum value for the Enviro-Septic [®] Contact Area.								
System Layout	Now, we need to determine the required spacing between the Enviro-Septic rows to spread the pipes over the Contact Area. Using the following formula; $L_R = 4 \times 3.05 = 12.2 \text{ m}$								
	Length of System x Width of System = 100 m ² $[L_R + (2 \times E_E)] x [(E_{cc} \times (N_r - 1)) + (2 \times E_L)] = 100 m2$								
	With these measurements, we can determine the following values:								
	Enviro-Septic® minimum Contact Area = 100 m2 EL = 0.8 m (min 450 mm) ECC = 2 m (min 450 mm) EE = 0.5 m (min 300 mm) LSystem = 13.2 m								
	$W_{System} = 7.6 \text{ m}$ Enviro-Septic Contact Area = 100.3 m ²								

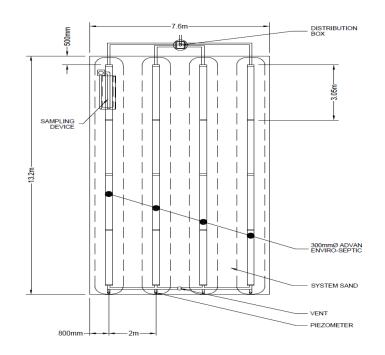
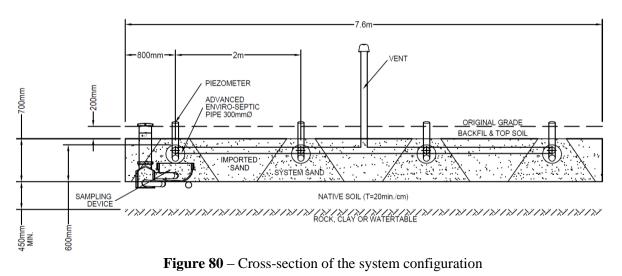



Figure 79 - Top view of the system configuration

In Ground System – Scenario 3, T = 40 min/cm

Design Scenario	 Daily design sewage flow = 2000 L/day Percolation time of the native soil; T = 40 min/cm (6 < T ≤ 50 min/cm) Minimum Vertical Separation 0.45 m Distance between original grade and high-water table, bedrock or clay is 1.35 m or greater. The system can be designed as an in-ground system as the percolation time of the native soil is ≤ 50 min/cm and the clearances to the bedrock, high water table and clay, set out in Table 4 in Section D of the manual are met.
Septic-Tank Design	 For Q = 2000 L/day, the septic-tank size will be: Residential wastewater, V_{septic tank} = 2 × Q = 4000 L minimum. Non-residential wastewater, V_{septic tank} = 3 × Q = 6000 L minimum.
Number of Advanced Enviro-Septic TM Pipe	We require a minimum of one Enviro-Septic [®] pipe (3.05 m long) for each 126 L/day of septic tank effluent. For Q = 2000 L/day, from equation (1): $N_{AES} = Q / 126$ $N_{AES} = 2000 / 126 = 15.9$ $N_{AES} = 16$ pipes minimum Total Length = 16 × 3.05 m = 48.8 m of Enviro-Septic [®] pipe
Minimum Enviro-Septic® Contact Area	The minimum Contact Area will be determined from the larger of the two possibilities. From Equation (2) we calculate the minimum surface / Base cut required for infiltration: For Q = 2000 l/day, $S_E = QT / 400$ $S_E = (2000 \times 40) / 400$ $S_E = 200 \text{ m}^2$ From Equation (3) we calculate the minimum surface for Enviro-Septic [®] spacing requirements. From the previous example we already know that, using $E_{CC} = 0.45 \text{ m}$, $E_L = 0.45 \text{ m}$ and $E_E = 0.3 \text{ m}$ respectively and assuming a configuration of 4 rows of 4 pipes, we obtain: $S_{SR} = 12.8 \times (1.35 + 0.9) = 28.8 \text{ m}^2$ • Since $S_{SR} < S_E$, we will use 200 m ² as the minimum value for the Enviro-Septic [®]
	Contact Area.

System Layout Now, we need to determine the required spacing between the Enviro-Septic rows to spread the pipes over the minimum Contact Area. Using the following formula

 $L_R = 4 \text{ x } 3.05 = 12.2 \text{ m}$

Length of System x Width of System = 200 m² [$L_R + (2 \times E_E)$] x [($E_{cc} \times (N_r - 1)$) + (2 × E_L)] = 200 m²

With these measurements, we can determine the following values:

 $\begin{array}{ll} Enviro-Septic^{\textcircled{\sc 0}}\ minimum\ contact\ area=200\ m^2\\ E_L=2.5\ m & (min\ 450\ mm)\\ E_{CC}=3\ m & (min\ 450\ mm)\\ E_E=1.1\ m & (min\ 300\ mm) \end{array}$

 $\begin{array}{l} L_{System} = 14.4 \ m \\ W_{System} = 14 \ m \end{array}$

Enviro-Septic Contact Area = 201.6 m^2

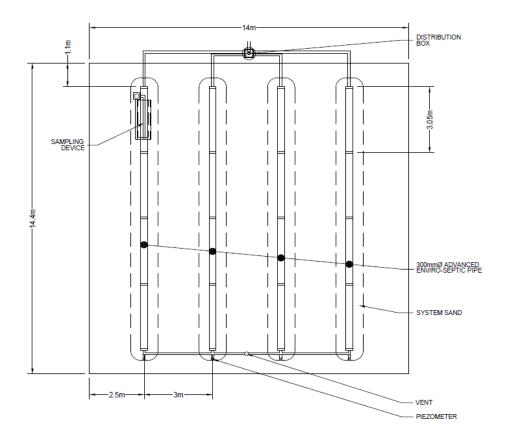


Figure 81 - Top view of the system configuration

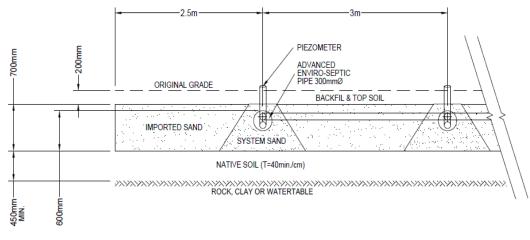


Figure 82 - Cross-section of the system configuration

In Ground System – Scenario 4: Q = 2000 L/day, T > 50 min/cm

Design Scenario

- Daily design sewage flow = 2000 L/day
- Percolation time of the native soil; T > 50 min/cm

This system can't be designed as an in-ground system because the percolation time of the native soil is greater than 50 min/cm.

Appendix 3 – Examples of Partially Raised Enviro-Septic Systems

Context This section will show examples of how to design a partially raised Enviro-Septic[®] system using the steps described in this manual.

Partially Raised System – Scenario 5: Q = 2000 L/day, T = 5 min/cm

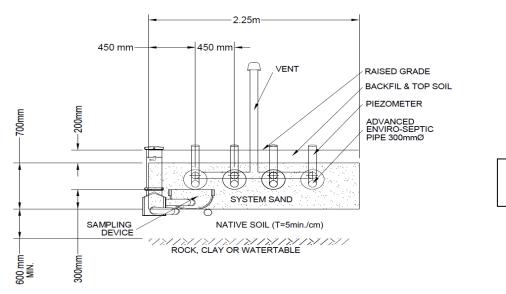
Design Scenario	 Daily design sewage flow = 2000 L/day Percolation time of the native soil; T = 5 min/cm (T ≤ 6 min/cm) Minimum Vertical Separation 0.60 m Distance between original grade and high-water table, bedrock or clay is 1 m (distance requires to be more than 0.6 m, but less than 1.5 m). The system can be designed as a partially raised system because the percolation time of the native soil is ≤ 50 min/cm and the clearances to the bedrock, high water table and clay, set out in Table 4 in Section D of the manual, can be met by partially raising the system.
Septic-Tank Design	All wastewater will enter into a septic tank sized in accordance with Clause 8.2.2.3 of the Ontario Building Code. Specifically, the septic tank shall have a minimum of 2 days retention time for residential wastewater and 3 days retention time for non-residential sewage flows. The septic tank shall also have two compartments as required by the Code and be equipped with an OBC effluent filter. At no time shall the tank be less than 3600 L working capacity as stated in Clause 8.2.2.3.
	 For Q = 2000 L/day, the Septic-Tank size will be: Residential wastewater, V_{septic tank} = 2 × Q = 4000 L minimum. Non-residential wastewater, V_{septic tank} = 3 × Q = 6000 L minimum.
Number of Advanced Enviro-Septic®	We need a minimum of one Enviro-Septic [®] pipe (3.05 m) for each 126 L/day of septic tank effluent.
Pipes	For Q = 2000 L/day, from Equation (1): $N_{AES} = Q / 126$ $N_{AES} = 2000 / 126 = 15.9$ $N_{AES} = 16 \text{ pipes minimum}$
	Total Length = 16×3.05 m = 48.8 m of Enviro-Septic [®] pipe

MinimumThe minimum Contact Area will be determined from the larger of the two possibilities.Enviro-Septic®From Equation (2) we calculate the minimum surface required for infiltration:

From Equation (3) we calculate the minimum surface for Enviro-Septic[®] spacing requirements. From Table 3.2, the minimum center to center pipe spacing is 0.45 m. With regards to E_L and E_E , (see Figure 6) the minimum distances are 0.45 m and 0.3 m respectively.

Following the requirements of the Ontario Building Code no row length is to be greater than 30 m long. Assuming we will use a configuration of 4 rows of 4 pipes, we obtain:

$$\begin{split} S_{SR} &= [L_R + (2 \times E_E)] \times [(E_{cc} \times (N_r - 1)) + (2 \times E_L)] \\ S_{SR} &= [12.2 + (2 \times 0.3)] \times [(0.45 \times (4 - 1)) + (2 \times 0.45)] \\ S_{SR} &= 12.8 \times (1.35 + 0.9) = 28.8 \ m^2 \end{split}$$


Since $S_{SR} > S_E$, we will use 28.8 m² as minimum surface required for infiltration.

Note: The choice of the pipe and row configuration is done taking into consideration the site constraints. Note that the minimum surface required for spacing requirements will differ slightly from one configuration to another.

System Layout Now we have all dimensions.

$$\begin{split} & E_{CC} = 0.45 \text{ m} \\ & E_E = 0.3 \text{ m} \\ & E_L = 0.45 \text{ m} \\ & L_R = 12.2 \text{ m} \\ \end{split}$$
 Length of System= $[L_R + (2 \times E_E)] = 12.8 \text{ m} \\ & \text{Width of System} = [(E_{cc} \times (N_r - 1)) + (2 \times E_L)] = 2.25 \text{ m} \end{split}$

Enviro-Septic[®] contact area = 28.8 m^2

Maximum 4:1 side slope around perimeter

Figure 83 – Cross-section of the system configuration

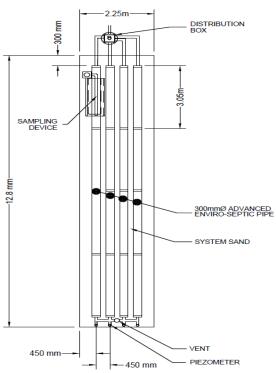


Figure 84 - Top view of the system configuration

Partially Raised System – Scenario 6: Q = 2000 L/day T = 20 min/cm

Design Scenario	 Daily design sewage flow = 2000 L/day Percolation time of the native soil T = 20 min/cm (6 < T ≤ 50 min/cm) Minimum Vertical Separation 0.45 m Distance between original grade and high-water table, bedrock or clay is 1 m (distance requires to be more than 0.45 m, but less than 1.35 m). The system can be designed as a partially raised system because the percolation time of the native soil is ≤ 50 min/cm and the clearances to the bedrock, high water table and clay, set out in Table 4 in Section D of the manual, can be met by partially raising the system.
Septic-Tank Design	 For Q = 2000 L/day, the septic-tank size will be: Residential wastewater, V_{septic tank} = 2 × Q = 4000 L minimum. Non-residential wastewater, V_{septic tank} = 3 × Q = 6000 L minimum.
Number of Advanced Enviro-Septic® Pipe	We need a minimum of one Enviro-Septic [®] pipe (3.05 m) for each 126 L/day of septic tank effluent. For Q = 2000 L/day, from equation (1): $N_{AES} = Q / 126$ $N_{AES} = 2000 / 126 = 15.9$ $N_{AES} = 16$ pipes minimum Total Length = 16 × 3.05 m = 48.8 m of Enviro-Septic [®] pipe
Minimum Enviro-Septic® Contact Area	$\label{eq:spectral_second} \begin{array}{llllllllllllllllllllllllllllllllllll$
System Layout	Now, we determine the required spacing between the Enviro-Septic rows to spread the pipes over the minimum Contact Area. Using the following formula;

 $L_R = 4 \text{ x } 3.05 = 12.2 \text{ m}$

 $\begin{array}{l} \mbox{Length of System x Width of System} = 100 \ m^2 \\ [L_R + (2 \times E_E)] \ x \ [(E_{cc} \times (N_r \mbox{-} 1)) + (2 \times E_L)] = 100 \ m^2 \\ [L_R + (2 \times (E_L - 0.15)] \ x \ [(2E_L \times (N_r \mbox{-} 1)) + (2 \times E_L)] = 100 \ m^2 \end{array}$

With these calculations, we can determine the following:

Enviro-Septic[®] minimum Contact Area = 100 m^2

$E_L = 0.8 m$	(min 0.45 m)
$E_{CC} = 2 m$	(min 0.45 m)
$E_{\rm E} = 0.5 {\rm m}$	(min 0.3 m)

 $\begin{array}{l} L_{System} = 13.2 \ m \\ W_{System} = 7.6 \ m \end{array}$

Enviro-Septic Contact Area = 100.3 m^2

Maximum	4:1	side	slope
around per	imet	er	

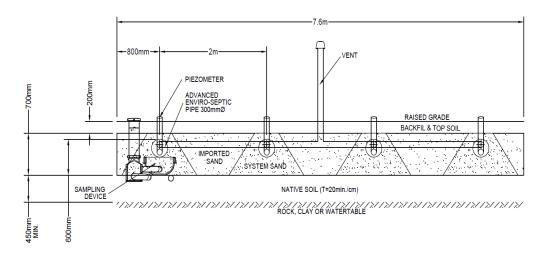
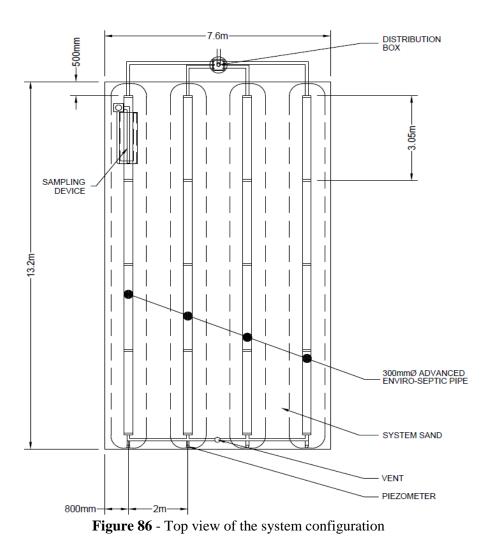



Figure 85 – Cross-section of the system configuration

Partially Raised System – Scenario 7: Q = 2000 L/day, T = 40 min/cm

Design Scenario	 Daily design sewage flow = 2000 L/day Percolation time of the native soil; T = 40 min/cm (6 < T ≤ 50 min/cm) Minimum Vertical Separation 0.45 m Distance between original grade and high-water table, bedrock or clay is 1 m (distance requires to be more than 0.45 m, but less than 1.35 m). The system can be designed as a partially raised system because the percolation time of the native soil is ≤ 50 min/cm and the clearances to the bedrock, high water table and clay, set out in table 4 in Section D of the manual, can be met by partially raising the system.
Septic-Tank Design	 For Q = 2000 L/day, the Septic-Tank size will be: Residential wastewater, V_{septic tank} = 2 × Q = 4000 L minimum. Non-residential wastewater, V_{septic tank} = 3 × Q = 6000 L minimum.
Number of Advanced Enviro-Septic® Pipe	We require a minimum of one Enviro-Septic [®] pipe (3.05 m) for each 126 L/day of septic tank effluent. For Q = 2000 L/day, from Equation (1): $N_{AES} = Q / 126$ $N_{AES} = 2000 / 126 = 15.9$ $N_{AES} = 16$ pipes minimum
	Total Length = 16×3.05 m = 48.8 m of Enviro-Septic [®] pipe
Minimum Enviro-Septic® Contact Area	The minimum Contact Area will be determined from the larger of the two possibilities. From Equation (2) we calculate the minimum surface required for evacuation: For Q = 2000 l/day, $S_E = QT / 400$ $S_E = (2000 \times 40) / 400$
	$S_E = 200 \text{ m}^2$ From Equation (3) we calculate the minimum surface for Enviro-Septic [®] spacing requirements. From the previous example we already know that, using $E_{CC} = 0.45 \text{ m}$, $E_L = 0.45 \text{ m}$ and $E_E = 0.3 \text{ m}$ respectively and assuming a configuration of 4 rows of 4 pipes, we obtain: $S_{SR} = 12.8 \times (1.35 + 0.9) = 28.8 \text{ m}^2$ • Since $S_{SR} < S_E$, we will use 200 m ² as the minimum value for the Enviro-Septic [®] Contact area.
System Layout	Now, we need to determine the required spacing between the Enviro-Septic rows to spread the pipes over the minimum Contact Area. Using the following formula;

$$\begin{split} L_{R} &= 4 \ x \ 3.05 = 12.2 \ m \\ Length \ of \ System \ x \ Width \ of \ System = 200 \ m^{2} \\ [L_{R} + (2 \times E_{E})] \ x \ [(E_{cc} \times (N_{r} - 1)) + (2 \times E_{L})] = 200 \ m^{2} \end{split}$$

With these calculations, we can determine the following values:

 $\begin{array}{ll} Enviro-Septic^{\circledast} \mbox{ minimum Contact Area} = 200\mbox{ m}^2\\ E_L = 2.5\mbox{ m} & (min\ 0.45\mbox{ m})\\ E_{CC} = 3\mbox{ m} & (min\ 0.45\mbox{ m})\\ E_E = 1.1\mbox{ m} & (min\ 0.3\mbox{ m}) \end{array}$

 $\begin{array}{l} L_{System} = 14.4 \ m \\ W_{System} = 14 \ m \end{array}$

Enviro-Septic Contact Area = 201.6 m^2

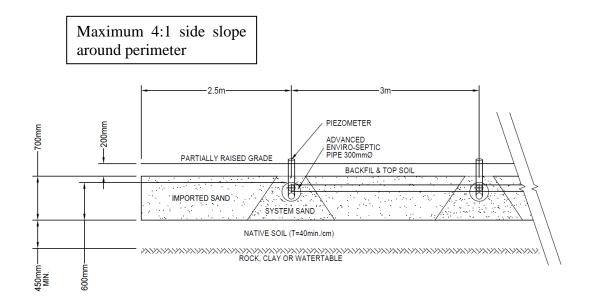
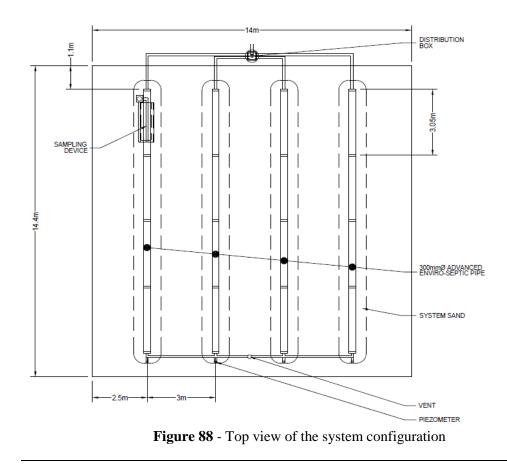



Figure 87 – Cross-section of the system configuration

Partially Raised System – Scenario 8: Q: 2000 L/day, T > 50 min/cm

Design Scenario

- Daily design sewage flow = 2000 L/day
- Percolation time of the native soil; T > 50 min/cm

This system can't be designed as a partially raised system because the percolation time of the native soil is > 50 min/cm.

Appendix 4 – Examples of Fully Raised Enviro-Septic Systems

Context This section will show examples of how to design a fully raised Enviro-Septic[®] system using the steps described in this manual.

Fully Raised System – Scenario 9: Q = 2000 L/day, T = 5 min/cm

Design Scenario	 Daily design sewage flow = 2000 L/day Percolation time of the native soil; T = 5 min/cm (T ≤ 6 min/cm) Minimum Vertical Separation 0.6 m Distance between original grade and high-water table, bedrock or clay is 0.6 m (distance requires to be 0.6 m or greater). The system can be designed as a fully raised system because the percolation time of the native soil is ≤ 50 min/cm and the clearances to the bedrock, high water table and clay, set out in Table 4 in Section D of the manual, can be met by fully raised the system.
Septic-Tank Design	All septic-tank will enter into a septic tank sized in accordance with Clause 8.2.2.3 of the Ontario Building Code. Specifically, the septic tank shall have a minimum of 2 days retention time for residential wastewater and 3 days retention time for non-residential sewage flows. The septic tank shall also have two compartments as required by the Code and be equipped with an OBC effluent filter. At no time shall the tank be less than 3600 L working capacity as stated in Clause 8.2.2.3.
	 For Q = 2000 L/day, the septic-tank size will be: Residential wastewater, V_{septic tank} = 2 × Q = 4000 L minimum. Non-residential wastewater, V_{septic tank} = 3 × Q = 6000 L minimum.
Number of Advanced Enviro-Septic®	We need a minimum of one Enviro-Septic [®] pipe (3.05 m) for each 126 L/day of septic tank effluent.
Pipe	For Q = 2000 L/day, from Equation (1): $N_{AES} = Q / 126$ $N_{AES} = 2000 / 126 = 15.9$ $N_{AES} = 16 \text{ pipes minimum}$
	Total Length = 16×3.05 m = 48.8 m of Enviro-Septic [®] pipe

Minimum The minimum Contact Area will be determined from the larger of the two possibilities. **Enviro-Septic®** From Equation (2) we calculate the minimum surface required for evacuation:

Contact Area

 $\begin{array}{l} S_{\rm E} = QT \ / \ 400 \\ S_{\rm E} = (2000 \times 5) \ / \ 400 \\ S_{\rm E} = 25 \ m^2 \end{array}$ For $Q = 2000 \, l/day$,

From Equation (2) we calculate the minimum surface for Enviro-Septic® spacing requirements. From Table 3.2, the recommended minimum center to center pipe spacing is 0.45 m. With regards to E_L and E_E , (see Figure 6) the minimum distances are 0.45 m and 0.3 m, respectively.

Following the requirements of the Ontario Building Code no row length is to be greater than 30 m long. Assuming we will use a configuration of 4 rows of 4 pipes, we obtain:

> $\mathbf{S}_{SR} = [\mathbf{L}_{R} + (2 \times \mathbf{E}_{E})] \times [(\mathbf{E}_{cc} \times (\mathbf{N}_{r} - 1)) + (2 \times \mathbf{E}_{L})]$ $S_{SR} = [12.2 + (2 \times 0.3)] \times [(0.45 \times (6 - 1)) + (2 \times 0.45)]$ $S_{SR} = 12.8 \times (1.35 + 0.9) = 28.8 \text{ m}^2$

Since $S_{SR} > S_E$, we will use 28.8 m² as the minimum value for the Enviro-Septic[®] Contact Area.

Note: The choice of the pipe and row configuration is done taking into consideration the site constraints. Note that the minimum surface required for spacing requirements will differ slightly from one configuration to another.

System Layout Now we have all dimensions.

> $E_{CC} = 0.45 \text{ m}$ $E_{\rm E} = 0.3 \, {\rm m}$ $E_L = 0.45 \text{ m}$ $L_R = 12.2 \text{ m}$ Length of System= $[L_R + (2 \times E_E)] = 12.8 \text{ m}$

Width of System= $[(E_{cc} \times (N_r - 1)) + (2 \times E_L)] = 2.25 \text{ m}$

Enviro-Septic[®] contact area = 28.8 m^2

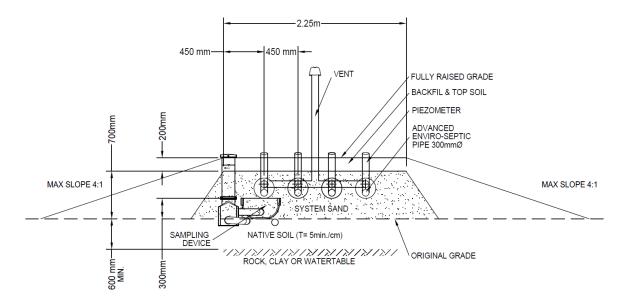


Figure 89 – Cross-section of the system configuration

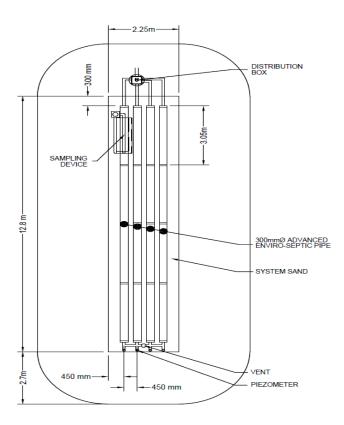


Figure 90 - Top view of the system configuration

Fully Raised System – Scenario 10: Q = 2000 L/day, T = 20 min/cm soil

Design Scenario	 Daily design sewage flow = 2000 L/day Percolation time of the native soil; T = 20 min/cm (6 < T ≤ 50 min/cm) Minimum Vertical Separation 0.45 m Distance between original grade and high-water table, bedrock or clay is 0.45 m (distance requires to be 0.45 m or greater). The system can be designed as a fully raised system because the percolation time of the native soil is ≤ 50 min/cm and the clearances to the bedrock, high water table and clay, set out in table 4 in Section D of the manual, can be met by fully raising the system.
Septic-Tank Design	 For Q = 2000 L/day, septic-tank size will be: Residential wastewater, V_{septic tank} = 2 × Q = 4000 L minimum. Non-residential wastewater, V_{septic tank} = 3 × Q = 6000 L minimum.
Number of Advanced Enviro-Septic® Pipe	We need a minimum of one Enviro-Septic [®] pipe (3.05 m) for each 126 L/day of septic tank effluent. For Q = 2000 L/day, from equation (1): $N_{AES} = Q / 126$ $N_{AES} = 2000 / 126 = 15.9$ $N_{AES} = 16$ pipes minimum
	Total Length = 16×3.05 m = 48.8 m of Enviro-Septic [®] pipe
Minimum Enviro-Septic® Contact Area	The minimum Contact Area will be determined from the larger of the two possibilities. From equation (2) we calculate the minimum surface required for evacuation: For Q = 2000 l/day, $S_E = QT / 400$ $S_E = (2000 \times 20) / 400$
	$S_E = 100 \text{ m}^2$ From Equation (3) we calculate the minimum surface for Enviro-Septic [®] spacing requirements. From the previous example we already know that, using E _{CC} = 0.45 m, E _L = 0.45 m and E _E = 0.3 m respectively and assuming a configuration of 4 rows of 4 pipes, we obtain: $S_{SR} = 12.8 \times (1.35 + 0.9) = 28.8 \text{ m}^2$ • Since S _{SR} < S _E , we will use 100 m ² as the minimum value for the Enviro-Septic [®]
System Layout	Now, we need to determine the required spacing between the Enviro-Septic rows to spread the pipes over the minimum Contact Area. Using the following formula;

$$\begin{split} L_R = 4 \ x \ 3.05 = 12.2 \ m \\ Length \ of \ System \ x \ Width \ of \ System = 100 \ m^2 \\ [L_R + (2 \times E_E)] \ x \ [(E_{cc} \times (N_r \text{ - } 1)) + (2 \times E_L)] = 100 \ m^2 \end{split}$$

With these calculations, we can determine the following values:

 $\begin{array}{ll} Enviro-Septic^{\circledast} \mbox{ minimum contact area} = 100 \mbox{ m}^2 \\ E_L = 0.8 \mbox{ m} & (min \ 0.45 \mbox{ m}) \\ E_{CC} = 2 \mbox{ m} & (min \ 0.45 \mbox{ m}) \\ E_E = 0.5 \mbox{ m} & (min \ 0.3 \mbox{ m}) \end{array}$

 $\begin{array}{l} L_{System} = 13.2 \ m \\ W_{System} = 7.6 \ m \end{array}$

Enviro-Septic Contact Area = 100.3 m^2

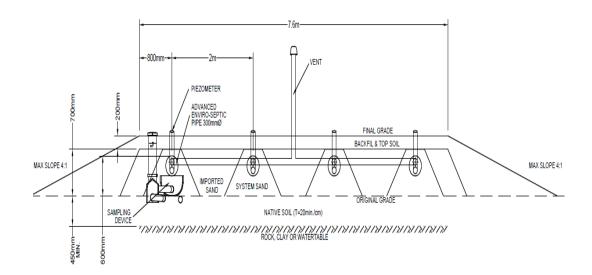


Figure 91 – Cross-section of the system configuration

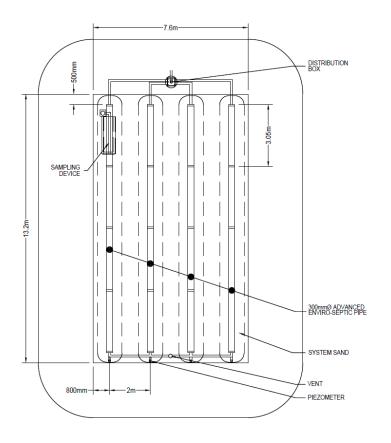


Figure 92 - Top view of the system configuration

Fully Raised System – Scenario 11: Q = 2000 L/day, T = 40 min/cm

Design Scenario	 Daily design sewage flow = 2000 L/day Percolation time of the native soil T = 40 min/cm (6 < T ≤ 50 min/cm) Minimum Vertical Separation 0.45 m Distance between original grade and high-water table, bedrock or clay is 0.45 m (distance requires to be 0.45 m or greater). The system can be designed as a fully raised system because the percolation time of the native soil is ≤ 50 min/cm and the clearances to the bedrock, high water table and clay, set out in table 4 in section D of the manual, can be met by fully raising the system.
Septic-Tank Design	 For Q = 2000 L/day, the Septic-Tank size will be: Residential wastewater, V_{septic tank} = 2 × Q = 4000 L minimum. Non-residential wastewater, V_{septic tank} = 3 × Q = 6000 L minimum.
Number of Advanced Enviro-Septic® Pipe	We require a minimum of one Enviro-Septic [®] pipe (3.05 m) for each 126 L/day of septic tank effluent. For Q = 2000 L/day, from Equation (1): $N_{AES} = Q / 126$ $N_{AES} = 2000 / 126 = 15.9$ $N_{AES} = 16$ pipes minimum Total Length = 16 × 3.05 m = 48.8 m of Enviro-Septic [®] pipe
Minimum Enviro-Septic® Contact Area	The minimum Contact Area will be determined from the larger of the two possibilities. From equation (2) we calculate the minimum surface required for evacuation: For Q = 2000 l/day, $S_E = QT / 400$ $S_E = (2000 \times 40) / 400$ $S_E = 200 m^2$
	From Equation (3) we calculate the minimum surface for Enviro-Septic [®] spacing requirements. From the previous example we already know that, using $E_{CC} = 0.45$ m, $E_L = 0.45$ m and $E_E = 0.3$ m respectively and assuming a configuration of 4 rows of 4 pipes, we obtain: $S_{SR} = 12.8 \times (1.35 + 0.9) = 28.8 \text{ m}^2$ • Since $S_{SR} < S_E$, we will use 200 m ² as the minimum value for the Enviro-Septic [®] Contact Area.
System Layout	Now, we need to determine the required spacing between the Enviro-Septic rows to spread the pipes over the minimum contact Area. Using the following formula;

 $L_R = 4 \text{ x } 3.05 = 12.2 \text{ m}$

 $\begin{array}{l} \text{Length of System x Width of System} = 200 \ m^2 \\ \left[L_R + (2 \times E_E) \right] x \ \left[(E_{cc} \times (N_r - 1)) + (2 \times E_L) \right] = 200 \ m^2 \end{array}$

With these calculations, we can determine the following values:

 $\begin{array}{ll} Enviro-Septic^{\circledast} \mbox{ minimum contact area} = 200 \mbox{ m}^2 \\ E_L = 2.5 \mbox{ m} & (min \ 0.45 \mbox{ m}) \\ E_{CC} = 3 \mbox{ m} & (min \ 0.45 \mbox{ m}) \\ E_E = 1.1 \mbox{ m} & (min \ 0.3 \mbox{ m}) \\ \end{array}$

 $\begin{array}{l} L_{System} = 14.4 \ m \\ W_{System} = 14 \ m \end{array}$

Enviro-Septic Contact Area = 201.6 m^2

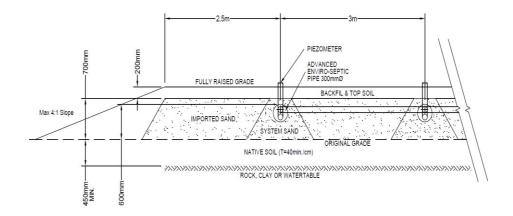


Figure 93 – Cross-section of the system configuration

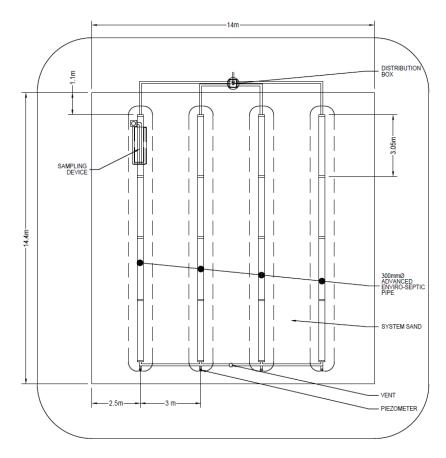


Figure 94 - Top view of the system configuration

Design Scenario Daily design sewage flow = 2000 L/day٠ Percolation time of the native soil; T > 50 min/cm• Minimum Vertical Separation 0.6 m ٠

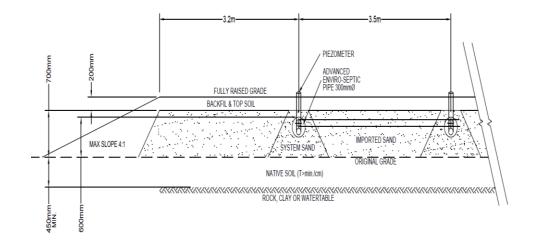
Distance between original grade and high-water table, bedrock or clay is 0.6 m • (distance requires to be 0.6 m or greater).

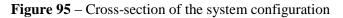
The system can be designed as a fully raised system because the percolation time of the

	native soil is $> 50 \text{ min/cm}$ and the clearances to the bedrock, high water table and clay, set out in Table 4 in Section D of the manual, can be met by fully raising the system.	
Septic-tank Design	 For Q = 2000 L/day, the septic-tank size will be: Residential wastewater, V_{septic tank} = 2 × Q = 4000 L minimum. Non-residential wastewater, V_{septic tank} = 3 × Q = 6000 L minimum. 	
Number of Advanced Enviro-Septic®	We require a minimum of one Enviro-Septic [®] pipe (3.05 m) for each 126L/day of septic tank effluent.	
Pipes	For Q = 2000 L/day, from equation (1): $N_{AES} = Q / 126$ $N_{AES} = 2000 / 126 = 15.9$ $N_{AES} = 16 \text{ pipes minimum}$	
	Total Length = 16×3.05 m = 48.8 m of Enviro-Septic [®] pipe	
Minimum Enviro-Septic®	The minimum contact area will be determined from the larger of the two possibilities.	
Contact Area	From Equation (2) we calculate the minimum surface required for infiltration:	
	For Q = 2000 l/day, $S_E = QT / 400$ (Where T is set at 50) $S_E = (2000 \times 50) / 400$ $S_E = 250 \text{ m}^2$	
	From Equation (3) we calculate the minimum surface for Enviro-Septic [®] spacing requirements. From the previous example we already know that, using $E_{CC} = 0.45$ m, $E_L = 0.45$ m and $E_E = 0.3$ m respectively and assuming a configuration of 4 rows of 4 pipes, we have: $S_{SR} = 12.8 \times (1.35 + 0.9) = 28.8 \text{ m}^2$	
	Since $S_{SR} < S_E$, we will use 250 m ² as the minimum value for the Enviro-Septic [®] Contact Area.	
System Layout	Now, we need to determine the required spacing between the Enviro-Septic rows to spread	

the pipes over the minimum contact Area. Using the following formula;

 $L_R = 4 \text{ x } 3.05 = 12.2 \text{ m}$


 $\begin{array}{l} \mbox{Length of System x Width of System = 250 } m^2 \\ [L_R + (2 \times E_E)] \ x \ [(E_{cc} \times (N_r \mbox{-} 1)) + (2 \times E_L)] = 250 \ m^2 \\ [L_R + (2 \times (E_L - 0.15)] \ x \ [(2E_L \times (N_r \mbox{-} 1)) + (2 \times E_L)] = 250 \ m^2 \end{array}$


With these calculations, we can determine the following values:

 $\begin{array}{ll} & \text{Enviro-Septic}^{\circledast} \text{ minimum contact area} = 250 \text{ m}^2 \\ & E_L = 3.2 \text{ m} & (\min 0.45 \text{ m}) \\ & E_{CC} = 3.5 \text{ m} & (\min 0.45 \text{ m}) \\ & E_E = 1.5 \text{m} & (\min 0.3 \text{ m}) \end{array}$

 $\begin{array}{l} L_{System} = 16.9 \mbox{ m} \\ W_{System} = 15.2 \mbox{ m} \end{array}$

Enviro-Septic Contact Area = 256.9 m^2

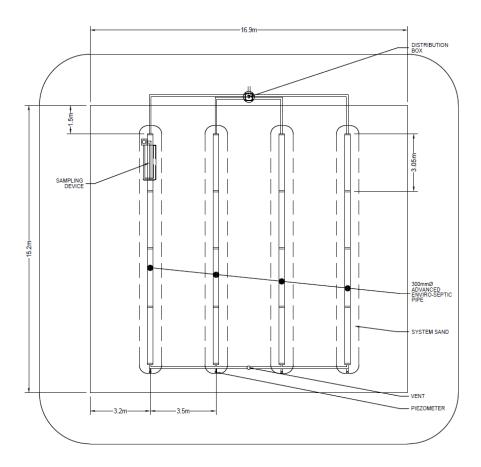


Figure 96 - Top view of the system configuration